The accurate model is the most important and basic condition for the application of advanced process control, but the conventional methods do not provide satisfactory results in the case of unstable processes. To effe...The accurate model is the most important and basic condition for the application of advanced process control, but the conventional methods do not provide satisfactory results in the case of unstable processes. To effec-tively control these processes, a novel identification method (Model Parameters and Initial States Identification si-multaneously in closed loop —MPISI) is proposed. The model parameters and initial states of state equation can be simultaneously identified using this method. The results of simulation and application show that this method has the advantageous of disturbance-rejection and robustness. This method proposes a novel way for the optimization and the advanced control of the process systems.展开更多
Convection and its ensuing severe weather, such as heavy rainfall, hail, tornado, and high wind, have significant im- pacts on our society and economy (e.g., Cao et al., 2004; Fritsch and Carbone, 2004; Verbout et al...Convection and its ensuing severe weather, such as heavy rainfall, hail, tornado, and high wind, have significant im- pacts on our society and economy (e.g., Cao et al., 2004; Fritsch and Carbone, 2004; Verbout et al., 2006; Ashley and Black, 2008; Cao, 2008; Cao and Ma, 2009; Zhang et al., 2014). Due to its localized and transient nature, the initiation of convection or convective initiation remains one of the least understood aspects of convection in the scientific communi- ties, and it is a significant challenge to accurately predict the exact timing and location of convective initiation (e.g., Cai et al., 2006; Wilson and Roberts, 2006; Xue and Martin, 2006; Cao and Zhang, 2016).展开更多
基金Supported by the Common Project Plan of Beijing Municipal Education Commission (No.100100435).
文摘The accurate model is the most important and basic condition for the application of advanced process control, but the conventional methods do not provide satisfactory results in the case of unstable processes. To effec-tively control these processes, a novel identification method (Model Parameters and Initial States Identification si-multaneously in closed loop —MPISI) is proposed. The model parameters and initial states of state equation can be simultaneously identified using this method. The results of simulation and application show that this method has the advantageous of disturbance-rejection and robustness. This method proposes a novel way for the optimization and the advanced control of the process systems.
文摘Convection and its ensuing severe weather, such as heavy rainfall, hail, tornado, and high wind, have significant im- pacts on our society and economy (e.g., Cao et al., 2004; Fritsch and Carbone, 2004; Verbout et al., 2006; Ashley and Black, 2008; Cao, 2008; Cao and Ma, 2009; Zhang et al., 2014). Due to its localized and transient nature, the initiation of convection or convective initiation remains one of the least understood aspects of convection in the scientific communi- ties, and it is a significant challenge to accurately predict the exact timing and location of convective initiation (e.g., Cai et al., 2006; Wilson and Roberts, 2006; Xue and Martin, 2006; Cao and Zhang, 2016).