The simulation of three-dimensional (3D) non-isothermal, non-Newtonian fluid filling process is an extremely difficult task and remains a challenging problem, which includes polymer melt flow with free surface coupl...The simulation of three-dimensional (3D) non-isothermal, non-Newtonian fluid filling process is an extremely difficult task and remains a challenging problem, which includes polymer melt flow with free surface coupled with transient heat transfer. This paper presents a full 3D non-isothermal two-phase flow model to predict the complex flow in melt filling process, where the Cross-WLF model is applied to characterize the rheological behav- ior of polymer melt. The governing equations are solved using finite volume method with SIMPLEC algorithm on collocated grids and the melt front is accurately captured by a high resolution level set method. A domain exten- sion technique is adopted to deal with the complex cavities, which greatly reduces the computational burden. To verify the validity of the developed 3D approach, the melts filling processes in two thin rectangular cavities (one of them with a cylindrical insert) are simulated. The predicted melt front interfaces are in good agreement with the experiment and commercial software prediction. For a case with a rather complex cavity, the dynamic filling process in a hemispherical shell is successfully simulated. All of the numerical results show that the developed numerical procedure can provide a reasonable orediction for injection molding process.展开更多
The reverse snapback phenomena (RSP) on I-V characteristics of static induction thyristors (SITH) are physically researched. The I-V curves of the power SITH exhibit reverse snapback phenomena, and even turn to th...The reverse snapback phenomena (RSP) on I-V characteristics of static induction thyristors (SITH) are physically researched. The I-V curves of the power SITH exhibit reverse snapback phenomena, and even turn to the conducting-state,when the anode voltage in the forward blocking-state is increased to a critical value. The RSP I-V characteristics of the power SITH are analyzed in terms of operating mechanism, double carrier injection effect, space charge effect, electron-hole plasma in the channel, and the variation in carrier lifetime. The reverse snapback mechanism is theoretically pro- posed and the mathematical expressions to calculate the voltage and current values at the snapback point are presented. The computing results are compared with the experiment values.展开更多
基金Supported by the National Basic Research Program of China(2012CB025903)the National Natural Science Foundation of China(91434201,11402210)
文摘The simulation of three-dimensional (3D) non-isothermal, non-Newtonian fluid filling process is an extremely difficult task and remains a challenging problem, which includes polymer melt flow with free surface coupled with transient heat transfer. This paper presents a full 3D non-isothermal two-phase flow model to predict the complex flow in melt filling process, where the Cross-WLF model is applied to characterize the rheological behav- ior of polymer melt. The governing equations are solved using finite volume method with SIMPLEC algorithm on collocated grids and the melt front is accurately captured by a high resolution level set method. A domain exten- sion technique is adopted to deal with the complex cavities, which greatly reduces the computational burden. To verify the validity of the developed 3D approach, the melts filling processes in two thin rectangular cavities (one of them with a cylindrical insert) are simulated. The predicted melt front interfaces are in good agreement with the experiment and commercial software prediction. For a case with a rather complex cavity, the dynamic filling process in a hemispherical shell is successfully simulated. All of the numerical results show that the developed numerical procedure can provide a reasonable orediction for injection molding process.
文摘The reverse snapback phenomena (RSP) on I-V characteristics of static induction thyristors (SITH) are physically researched. The I-V curves of the power SITH exhibit reverse snapback phenomena, and even turn to the conducting-state,when the anode voltage in the forward blocking-state is increased to a critical value. The RSP I-V characteristics of the power SITH are analyzed in terms of operating mechanism, double carrier injection effect, space charge effect, electron-hole plasma in the channel, and the variation in carrier lifetime. The reverse snapback mechanism is theoretically pro- posed and the mathematical expressions to calculate the voltage and current values at the snapback point are presented. The computing results are compared with the experiment values.