Underground natural gas storage(UNGS)is an important part of the natural gas supply system to ensure a balanced energy supply.The surface system,as an important part of the gas storage,undertakes the functions of gas ...Underground natural gas storage(UNGS)is an important part of the natural gas supply system to ensure a balanced energy supply.The surface system,as an important part of the gas storage,undertakes the functions of gas injection and gas production of the gas storage,and its investment economy is of vital importance.In fact,the UNGS surface pipeline network has two-way injection and production characteristics,which is different from the one-way production characteristics of conventional oil&gas gathering and transportation systems.This paper takes the minimum investment of the pipeline network as the objective function,considers the gas injection and gas withdrawal flow conditions and esablishes a mixed integer non-linear programming model(MINLP)for the surface pipeline network of the UNGS to optimize its pipeline layout and diameter parameters.Constraints including the well affiliation,the number of stations,the gathering radius,the processing capacity and the flow/pressure equilibrium equations,are also taken into consideration.Taking an UNGS in China as an example,the results of the optimal structure and diameter of the pipeline network,as well as the pipe flow,node pressure,and maximum/minimum flowrate during gas injection and gas withdrawal are obtained.Finally,the effects of constraints such as processing capacity and radius on the structure layout and investment of the UNGS are analyzed,verifying the reliability and effectiveness of the model.展开更多
Underground salt cavern CO_(2) storage(SCCS)offers the dual benefits of enabling extensive CO_(2) storage and facilitating the utilization of CO_(2) resources while contributing the regulation of the carbon market.Its...Underground salt cavern CO_(2) storage(SCCS)offers the dual benefits of enabling extensive CO_(2) storage and facilitating the utilization of CO_(2) resources while contributing the regulation of the carbon market.Its economic and operational advantages over traditional carbon capture,utilization,and storage(CCUS)projects make SCCS a more cost-effective and flexible option.Despite the widespread use of salt caverns for storing various substances,differences exist between SCCS and traditional salt cavern energy storage in terms of gas-tightness,carbon injection,brine extraction control,long-term carbon storage stability,and site selection criteria.These distinctions stem from the unique phase change characteristics of CO_(2) and the application scenarios of SCCS.Therefore,targeted and forward-looking scientific research on SCCS is imperative.This paper introduces the implementation principles and application scenarios of SCCS,emphasizing its connections with carbon emissions,carbon utilization,and renewable energy peak shaving.It delves into the operational characteristics and economic advantages of SCCS compared with other CCUS methods,and addresses associated scientific challenges.In this paper,we establish a pressure equation for carbon injection and brine extraction,that considers the phase change characteristics of CO_(2),and we analyze the pressure during carbon injection.By comparing the viscosities of CO_(2) and other gases,SCCS’s excellent sealing performance is demonstrated.Building on this,we develop a long-term stability evaluation model and associated indices,which analyze the impact of the injection speed and minimum operating pressure on stability.Field countermeasures to ensure stability are proposed.Site selection criteria for SCCS are established,preliminary salt mine sites suitable for SCCS are identified in China,and an initial estimate of achievable carbon storage scale in China is made at over 51.8-77.7 million tons,utilizing only 20%-30%volume of abandoned salt caverns.This paper addresses key scientific and engineering challenges facing SCCS and determines crucial technical parameters,such as the operating pressure,burial depth,and storage scale,and it offers essential guidance for implementing SCCS projects in China.展开更多
基金This work was part of the program“Study on the optimization method and architecture of oil and gas pipeline network design in discrete space and network space”,funded by the National Natural Science Foundation of China,grant number 51704253.The authors are grateful to all study participants.
文摘Underground natural gas storage(UNGS)is an important part of the natural gas supply system to ensure a balanced energy supply.The surface system,as an important part of the gas storage,undertakes the functions of gas injection and gas production of the gas storage,and its investment economy is of vital importance.In fact,the UNGS surface pipeline network has two-way injection and production characteristics,which is different from the one-way production characteristics of conventional oil&gas gathering and transportation systems.This paper takes the minimum investment of the pipeline network as the objective function,considers the gas injection and gas withdrawal flow conditions and esablishes a mixed integer non-linear programming model(MINLP)for the surface pipeline network of the UNGS to optimize its pipeline layout and diameter parameters.Constraints including the well affiliation,the number of stations,the gathering radius,the processing capacity and the flow/pressure equilibrium equations,are also taken into consideration.Taking an UNGS in China as an example,the results of the optimal structure and diameter of the pipeline network,as well as the pipe flow,node pressure,and maximum/minimum flowrate during gas injection and gas withdrawal are obtained.Finally,the effects of constraints such as processing capacity and radius on the structure layout and investment of the UNGS are analyzed,verifying the reliability and effectiveness of the model.
基金supported by the National Natural Science Foundation of China(52074046,52122403,51834003,and 52274073)the Graduate Research and Innovation Foundation of Chongqing(CYB22023)+2 种基金the Chongqing Talents Plan for Young Talents(cstc2022ycjh-bgzxm0035)Hunan Institute of Engineering(21RC025 and XJ2005)Hunan Province Education Department(21B0664).
文摘Underground salt cavern CO_(2) storage(SCCS)offers the dual benefits of enabling extensive CO_(2) storage and facilitating the utilization of CO_(2) resources while contributing the regulation of the carbon market.Its economic and operational advantages over traditional carbon capture,utilization,and storage(CCUS)projects make SCCS a more cost-effective and flexible option.Despite the widespread use of salt caverns for storing various substances,differences exist between SCCS and traditional salt cavern energy storage in terms of gas-tightness,carbon injection,brine extraction control,long-term carbon storage stability,and site selection criteria.These distinctions stem from the unique phase change characteristics of CO_(2) and the application scenarios of SCCS.Therefore,targeted and forward-looking scientific research on SCCS is imperative.This paper introduces the implementation principles and application scenarios of SCCS,emphasizing its connections with carbon emissions,carbon utilization,and renewable energy peak shaving.It delves into the operational characteristics and economic advantages of SCCS compared with other CCUS methods,and addresses associated scientific challenges.In this paper,we establish a pressure equation for carbon injection and brine extraction,that considers the phase change characteristics of CO_(2),and we analyze the pressure during carbon injection.By comparing the viscosities of CO_(2) and other gases,SCCS’s excellent sealing performance is demonstrated.Building on this,we develop a long-term stability evaluation model and associated indices,which analyze the impact of the injection speed and minimum operating pressure on stability.Field countermeasures to ensure stability are proposed.Site selection criteria for SCCS are established,preliminary salt mine sites suitable for SCCS are identified in China,and an initial estimate of achievable carbon storage scale in China is made at over 51.8-77.7 million tons,utilizing only 20%-30%volume of abandoned salt caverns.This paper addresses key scientific and engineering challenges facing SCCS and determines crucial technical parameters,such as the operating pressure,burial depth,and storage scale,and it offers essential guidance for implementing SCCS projects in China.