期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Hydraulic cylinder control of injection molding machine based on differential evolution fractional order PID 被引量:2
1
作者 LI Ya-qiu GU Li-chen +1 位作者 YANG Sha XUE Xu-fei 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2020年第4期317-325,共9页
Injection molding machine,hydraulic elevator,speed actuators belong to variable speed pump control cylinder system.Because variable speed pump control cylinder system is a nonlinear hydraulic system,it has some proble... Injection molding machine,hydraulic elevator,speed actuators belong to variable speed pump control cylinder system.Because variable speed pump control cylinder system is a nonlinear hydraulic system,it has some problems such as response lag and poor steady-state accuracy.To solve these problems,for the hydraulic cylinder of injection molding machine driven by the servo motor,a fractional order proportion-integration-diferentiation(FOPID)control strategy is proposed to realize the speed tracking control.Combined with the adaptive differential evolution algorithm,FOPID control strategy is used to determine the parameters of controller on line based on the test on the servo-motor-driven gear-pump-controlled hydraulic cylinder injection molding machine.Then the slef-adaptive differential evolution fractional order PID controller(SADE-FOPID)model of variable speed pump-controlled hydraulic cylinder is established in the test system with simulated loading.The simulation results show that compared with the classical PID control,the FOPID has better steady-state accuracy and fast response when the control parameters are optimized by the adaptive differential evolution algorithm.Experimental results show that SADE-FOPID control strategy is effective and feasible,and has good anti-load disturbance performance. 展开更多
关键词 variable speed pump-controlled cylinder fractional order proportion-integration-differentiation(FOPID) self-adaptive differential evolution(SADE) injection molding machine control anti-load disturbance
下载PDF
IMPROVE THE KINETIC PERFORMANCE OF THE PUMP CONTROLLED CLAMPING UNIT IN PLASTIC INJECTION MOLDING MACHINE WITH ADAPTIVE CONTROL STRATEGY 被引量:3
2
作者 QUAN Long LIU Shiping 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2006年第1期9-13,共5页
The kinetic characteristics of the clamping unit of plastic injection molding machine that is controlled by close loop with newly developed double speed variable pump unit are investigated. Considering the wide variat... The kinetic characteristics of the clamping unit of plastic injection molding machine that is controlled by close loop with newly developed double speed variable pump unit are investigated. Considering the wide variation of the cylinder equivalent mass caused by the transmission ratio of clamping unit and the severe instantaneous impact force acted on the cylinder during the mold closing and opening process, an adaptive control principle of parameter and structure is proposed to improve its kinetic performance. The adaptive correlation between the acceleration feedback gain and the variable mass is derived. The pressure differential feedback is introduced to improve the dynamic performance in the case of small inertia and heavy impact load. The adaptation of sum pressure to load is used to reduce the energy loss of the system. The research results are verified by the simulation and experiment, The investigation method and the conclusions are also suitable for the differential cylinder system controlled by the traditional servo pump unit. 展开更多
关键词 Adaptive control Pump controlled system Clamping unit Plastic injection molding machine
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部