Based on the independently developed true triaxial multi-physical field large-scale physical simulation system of in-situ injection and production,we conducted physical simulation of long-term multi-well injection and...Based on the independently developed true triaxial multi-physical field large-scale physical simulation system of in-situ injection and production,we conducted physical simulation of long-term multi-well injection and production in the hot dry rocks of the Gonghe Basin,Qinghai Province,NW China.Through multi-well connectivity experiments,the spatial distribution characteristics of the natural fracture system in the rock samples and the connectivity between fracture and wellbore were clarified.The injection and production wells were selected to conduct the experiments,namely one injection well and two production wells,one injection well and one production well.The variation of several physical parameters in the production well was analyzed,such as flow rate,temperature,heat recovery rate and fluid recovery.The results show that under the combination of thermal shock and injection pressure,the fracture conductivity was enhanced,and the production temperature showed a downward trend.The larger the flow rate,the faster the decrease.When the local closed area of the fracture was gradually activated,new heat transfer areas were generated,resulting in a lower rate of increase or decrease in the mining temperature.The heat recovery rate was mainly controlled by the extraction flow rate and the temperature difference between injection and production fluid.As the conductivity of the leak-off channel increased,the fluid recovery of the production well rapidly decreased.The influence mechanisms of dominant channels and fluid leak-off on thermal recovery performance are different.The former limits the heat exchange area,while the latter affects the flow rate of the produced fluid.Both of them are important factors affecting the long-term and efficient development of hot dry rock.展开更多
Permeability sensitivity to stress experiments were conducted on standard core samples taken from Wen 23 Gas Storage at multi-cycle injection and production conditions of the gas storage to study the change pattern of...Permeability sensitivity to stress experiments were conducted on standard core samples taken from Wen 23 Gas Storage at multi-cycle injection and production conditions of the gas storage to study the change pattern of stress sensitivity of permeability.A method for calculating permeability under overburden pressure in the multi-cycle injection and production process was proposed,and the effect of stress sensitivity of reservoir permeability on gas well injectivity and productivity in UGS was analyzed.Retention rate of permeability decreased sharply first and then slowly with the increase of the UGS cycles.The stress sensitivity index of permeability decreased with the increase of cycle number of net stress variations in the increase process of net stress.The stress sensitivity index of permeability hardly changed with the increase of cycle number of net stress variations in the decrease process of net stress.With the increase of cycle number of net stress variation,the stress sensitivity index of permeability in the increase process of net stress approached that in the decrease process of net stress.The lower the reservoir permeability,the greater the irreversible permeability loss rate,the stronger the cyclic stress sensitivity,and the higher the stress sensitivity index of the reservoir,the stronger the reservoir stress sensitivity.The gas zones with permeability lower than 0.3’10-3 mm2 are not suitable as gas storage regions.Stress sensitivity of reservoir permeability has strong impact on gas well injectivity and productivity and mainly in the first few cycles.展开更多
Inner Mongolia is abundant in geothermal resources,but the development and utilization of medium-depth geothermal resources for clean heating in winter is still in the preliminary stage compared with the neighboring p...Inner Mongolia is abundant in geothermal resources,but the development and utilization of medium-depth geothermal resources for clean heating in winter is still in the preliminary stage compared with the neighboring provinces.In this paper,a recently developed geothermal heating system using the Mesozoic sandstone reservoirs in Baokang of Kailu Basin,Eastern Inner Mongolia was investigated,a threedimensional geological model of a pair of production and injection well was established,and numerical simulations on the long term operation performance were conducted and verified by pumping test and water level recovery test data.The effects of flow rates,the direction of wells,injection temperature and ratios on the flow field and water level in the thermal reservoir were analyzed.The results show that considering a 30-year operation period and a production rate from 90 m^(3)/h to 110 m^(3)/h,the optimum well spacing can be increased from 225 m to 245 m,with an average value of 235 m.With the decrease of the injection temperature,the cold front of the injection water has an increasing influence on the temperature in the production well.A complete injection or the principle of production according to injection is recommended in order to maintain the long-term operation stability.In addition,the location of the injection well should be arranged in the downstream of the natural flow field.The present results can provide a useful guide for the optimum design and performance prediction of geothermal wells,thus maintaining the production and injection balance and promoting the sustainable development and utilization of medium-depth and deep geothermal resources.展开更多
From a time value of revenue point of view,it is preferred that the time between reservoir stimulation and oil production response is small.Heavy oil combustion processes have a lag time between air injection and liqu...From a time value of revenue point of view,it is preferred that the time between reservoir stimulation and oil production response is small.Heavy oil combustion processes have a lag time between air injection and liquid production,but the common practice in production data analysis uses simultaneous injection and production data when seeking a relationship between them.In this research,the time scales of production for the Kerrobert toe-to-heel air injection(THAI)heavy oil project in Saskatchewan,Canada,is analyzed by using cross correlation analysis,i.e.time delay analysis between air injection and oil production.The results reveal two time scales with respect to production response with two distinctive recovery mechanisms:(1)a short time scale response(nearly instantaneous)where oil production peaks right after air injection(directly after opening production well)reflecting cold heavy oil production mechanisms,and(2)a longer time scale(of order of 100-300 days)response where peak production occurs associated with the collective phenomena of air injection,heat generating reactions,heat transfer,and finally,heated mobilized heavy oil drainage to the production well.This understanding of the two time scales and associated production mechanisms provides a basis for improving the performance of THAI.展开更多
A dynamic transient flow analysis method considering complex factors such as the cyclic injection and production history in a gas field storage facility was established in view of the limitations of the existing metho...A dynamic transient flow analysis method considering complex factors such as the cyclic injection and production history in a gas field storage facility was established in view of the limitations of the existing methods for transient flow analysis and the characteristics of the injection-production operation of strongly heterogeneous gas reservoirs, and the corresponding theoretical charts were drawn. In addition, an injection-production dynamic transient flow analysis model named "three points and two stages" suitable for an underground gas storage(UGS) well with alternate working conditions was proposed. The "three points" refer to three time points during cyclic injection and production, namely, the starting point of gas injection for UGS construction, the beginning and ending points of the injection-production analysis stage;and the "two stages" refer to historical flow stage and injection-production analysis stage. The study shows that the dimensionless pseudo-pressure and dimensionless pseudo-pressure integral curves of UGS well flex downward in the early stage of the injection and production process, and the dimensionless pseudo-pressure integral derivative curve is convex during the gas production period and concave during the gas injection period, and the curves under different flow histories have atypical features. The new method present in this paper can analyze transient flow of UGS accurately. The application of this method to typical wells in Hutubi gas storage shows that the new method can fit the pressure history accurately, and obtain reliable parameters and results.展开更多
Steam assisted gravity drainage (SAGD) technology has been industrialized popularization and application in our country, according to the characteristics of Xing group I SAGD experimental zone in liaohe oilfield, SA...Steam assisted gravity drainage (SAGD) technology has been industrialized popularization and application in our country, according to the characteristics of Xing group I SAGD experimental zone in liaohe oilfield, SAGD production stage injection-production parameters such as the operating pressure, Sub - Cool control, steam injection rate, steam dryness, production factor are studied and selected.展开更多
This paper proposed a method of injection-production system adjustment to solve the problem that the water flooding effect was restricted because of the horizontal and vertical contradictions during the development pr...This paper proposed a method of injection-production system adjustment to solve the problem that the water flooding effect was restricted because of the horizontal and vertical contradictions during the development process of fault block reservoirs. Considering the heterogeneity of reservoir, the Buckley-Leverett water flooding theory was applied to establish the relationship between the recovery and cumulative water injection. In order to achieve the goal of vertically balanced recovery of each section, the calculation method of vertical sectional injection allocation was proposed. The planar triangular seepage unit was assumed and sweep coefficients of different oil-water distribution patterns were characterized using multi-flow tube method. In order to balance and maximize the plane sweep coefficient, the calculation method of plane production system optimization was obtained. Then the injection-production system stereoscopic adjustment method based on equilibrium displacement was proposed with vertical sectional injection allocation and plane production system optimization. This method was applied to injection and production adjustment of BZ oilfield in southern Bohai. The effect of water control and oil increase was obvious. This method can greatly improve the effect of water flooding of offshore fault block reservoirs with the adjustment of injection-production system.展开更多
The efficient exploitation of geothermal energy through enhanced geothermal systems(EGS)has been a relevant topic for hot dry rock(HDR)geothermal resources.When cryogenic fluid is injected into a thermal reservoir,imp...The efficient exploitation of geothermal energy through enhanced geothermal systems(EGS)has been a relevant topic for hot dry rock(HDR)geothermal resources.When cryogenic fluid is injected into a thermal reservoir,improving heat exchange efficiency is key to achieving the optimal exploitation of HDR.In this paper,granite outcrops from Gonghe Basin were used as the testing sample.The natural fractures in the granite samples were relatively well developed.To simulate long-term injection and production from multi-wells in situ,physical ex-periments were performed in a newly-developed,in-house large-scale true triaxial experimental system.Geothermal extraction performance of an HDR was simulated for long-term injection and production operations.Simultaneously,the mode of one-injection and multiple-production wells was represented.In the paper,the ef-fects of the production-injection well spacing,the number of production wells and the injection rate on the production temperature and flow rate are discussed.The results show that,during long-term injection and pro-duction,there are two stages of production temperature variation,namely stabilization and attenuation.When the number of the production wells is increased,the heat extraction efficiency is accelerated.Moreover,competitive diversion of fluid among fractures occurred due to different conductivities.Furthermore,under different pro-duction modes,the production flow rate contributed differently to the heat extraction.Finally,the effect of the production-injection wells spacing on the heat exchange performance was analyzed;this is mainly reflected in the change of the effective heat exchange area between the rock and the injected fluid.The results emphasize the importance of designing an appropriate production mode and optimizing the injection-production parameters to ensure efficient HDR exploitation.展开更多
One-dimensional gas injection storage building and one-cycle injection-production modeling experiment,and two-dimensional flat core storage building and multi-cycle injection-production modeling experiment were carrie...One-dimensional gas injection storage building and one-cycle injection-production modeling experiment,and two-dimensional flat core storage building and multi-cycle injection-production modeling experiment were carried out using one-dimensional long core and large two-dimensional flat physical models to find out the effects of reservoir physical properties and injection-production balance time on reservoir pore utilization efficiency,effective reservoir capacity formation and capacity-reaching cycle.The results show that reservoir physical properties and formation water saturation are the main factors affecting the construction and operation of gas-reservoir type underground gas storage.During the construction and operation of gas-reservoir type gas storage,the reservoir space can be divided into three types of working zones:high efficiency,low efficiency and ineffective ones.The higher the reservoir permeability,the higher the pore utilization efficiency is,the smaller the ineffective working zone is,or there is no ineffective working zone;the smaller the loss of injected gas is,and the higher the utilization rate of pores is.The better the reservoir physical properties,the larger the reservoir space and the larger the final gas storage capacity is.The higher the water saturation of the reservoir,the more the gas loss during gas storage capacity building and operation is.Optimizing injection-production regime to discharge water and reduce water saturation is an effective way to reduce gas loss in gas storage.In the process of multiple cycles of injection and production,there is a reasonable injection-production balance time,further extending the injection-production balance period after reaching the reasonable time has little contribution to the expansion of gas storage capacity.展开更多
This paper summarizes the important progress in the field of oil and gas production engineering during the"Thirteenth Five-Year Plan"period of China,analyzes the challenges faced by the current oil and gas p...This paper summarizes the important progress in the field of oil and gas production engineering during the"Thirteenth Five-Year Plan"period of China,analyzes the challenges faced by the current oil and gas production engineering in terms of technological adaptability,digital construction,energy-saving and emission reduction,and points out the future development direction.During the"Thirteenth Five-Year Plan"period,series of important progresses have been made in five major technologies,including separated-layer injection,artificial lift,reservoir stimulation,gas well de-watering,and workover,which provide key technical support for continuous potential tapping of mature oilfields and profitable production of new oilfields.Under the current complex international political and economic situation,oil and gas production engineering is facing severe challenges in three aspects:technical difficulty increases in oil and gas production,insignificant improvements in digital transformation,and lack of core technical support for energy-saving and emission reduction.This paper establishes three major strategic directions and implementation paths,including oil stabilization and gas enhancement,digital transformation,and green and low-carbon development.Five key research areas are listed including fine separated-layer injection technology,high efficiency artificial lift technology,fine reservoir stimulation technology,long term gas well de-watering technology and intelligent workover technology,so as to provide engineering technical support for the transformation,upgrading and high-quality development of China’s oil and gas industry.展开更多
This study investigated the relationship between a subject’s evaluation of injection molding machines (IMMs) and formal design features using Kansei engineering. This investigation used 12 word pairs to evaluate the ...This study investigated the relationship between a subject’s evaluation of injection molding machines (IMMs) and formal design features using Kansei engineering. This investigation used 12 word pairs to evaluate the IMM configurations and employed the semantic differential method to explore the perception of 60 interviewees of 12 examples. The relationship between product feature design and corresponding words was derived by multiple regression analysis. Factor analysis reveals that the 12 examples can be categorized as two styles—advanced style and succinct style. For the advanced style, an IMM should use a rectangular form for the clamping-unit cover and a full-cover for the injection-unit. For the succinct style, the IMM configuration should use a beveled form for the safety cover and a vertical rectangular form for the clamping-unit cover. Quantitative data and suggested guidelines for the relationship between design features and interviewee evaluations are useful to product designers when formulating design strategies.展开更多
BZ Oilfield is a medium-sized oilfield with shallow delta facies deposits in Bohai Bay of China,compared with fluvial and delta facies oilfields,there is no mature experience for reference of reservoir configuration,w...BZ Oilfield is a medium-sized oilfield with shallow delta facies deposits in Bohai Bay of China,compared with fluvial and delta facies oilfields,there is no mature experience for reference of reservoir configuration,well pattern arrangement and development model in offshore oilfields in China.In view of the difficulty in describing the reservoir configuration of shallow water delta,the single distributary sand dam in shallow water delta is characterized by well-seismic combination and multi-attribute constraints.The mathematical mechanism model of pinch-out position of sand body is established,fine characterization of BZ shallow water delta reservoir is put forward.The horizontal well pattern arrangement type for shallow water delta reservoir is proposed and the method of well pattern optimization based on vertical displacement theory is put forward.A method of inversion of reservoir connectivity using production dynamic data by numerical well testing is proposed and a new method for optimizing water injection rate in water injection wells is proposed aiming at the difficulty of recognizing injection-production connectivity of shallow water delta reservoirs.The fine configuration of BZ shallow water delta reservoir based on distributary sand dam is proposed,which guides the recognition of remaining oil distribution law.By deploying adjustment wells,the water flooding coincidence degree of actual drilling is 86% compared with that of pre-drilling prediction,which indicates that the research results of reservoir configuration can effectively guide the understanding of oilfield geology.Through the theoretical well arrangement type of vertical displacement of single sand body in horizontal wells of shallow water delta reservoir,a high water flooding recovery rate of 35% is achieved in primary well pattern.The connectivity coefficients of injection-production boundary of shallow water delta reservoir configuration are calculated,and the water injection distribution coefficients are obtained by normalizing the directional coefficients.This paper presents a configuration method based on multi-attribute fusion under the constraints of sedimentary process.In this paper,a shallow water delta reservoir configuration method based on multi-attribute fusion constrained by sedimentary process is proposed,and the injection-production connectivity coefficient and injection well distribution coefficient of the configuration boundary are calculated.展开更多
As production automation systems have been and are becoming more and more complex, the task of quality assurance is increasingly challenging. Model-based testing is a research field addressing this challenge and many ...As production automation systems have been and are becoming more and more complex, the task of quality assurance is increasingly challenging. Model-based testing is a research field addressing this challenge and many approaches have been suggested for different applications. The goal of this paper is to review these approaches regarding their suitability for the domain of production automation in order to identify current trends and research gaps. The different approaches are classified and clustered according to their main focus which is either testing and test case generation from some form of model automatons, test case generation from models used within the development process of production automation systems, test case generation from fault models or test case selection and regression testing.展开更多
Micro powder injection molding (μPIM),a miniaturized variant of powder injection molding,has advantages of shape complexity,applicability to many materials and good mechanical properties. Co-injection molding has bee...Micro powder injection molding (μPIM),a miniaturized variant of powder injection molding,has advantages of shape complexity,applicability to many materials and good mechanical properties. Co-injection molding has been realized between met-als and ceramics on micro components,which become the first breakthrough within the PIM field. Combined with the prominent characteristics of high features/cost ratio,micro powder injection molding becomes a potential technique for large scale production of intricate and three-dimensional micro components or micro-structured components in microsystems technology (MST) field.展开更多
Let φ be an Orlicz function that has a complementary function φ* and let lφ be an Orlicz sequence space. We prove a similar version of Rearrangement Inequality and Chebyshev's Sum Inequality in lφ FX, the Freml...Let φ be an Orlicz function that has a complementary function φ* and let lφ be an Orlicz sequence space. We prove a similar version of Rearrangement Inequality and Chebyshev's Sum Inequality in lφ FX, the Fremlin projective tensor product of lφ with a Banach lattice X, and in lφ iX, the Wittstock injective tensor product of lφ with a Banach lattice X.展开更多
Suppose that E and F are separable Banach spaces, X and Y are independent symmetric E and F-valued random vectors respectively. This paper is devoted to the study of the central limit theorem for X Y in the injective...Suppose that E and F are separable Banach spaces, X and Y are independent symmetric E and F-valued random vectors respectively. This paper is devoted to the study of the central limit theorem for X Y in the injective and projective tensor product spaces E F and E F. Special attention is paid to l2 l2. In addition, two counter-examples are given.展开更多
Replication processes for the manufacturing of micro/nano-structured components are characterized by a certain degree of precision and accuracy.The transcription loss,or replication fidelity,defines the geometrical an...Replication processes for the manufacturing of micro/nano-structured components are characterized by a certain degree of precision and accuracy.The transcription loss,or replication fidelity,defines the geometrical and dimensional correspondence of micro/nano-structure from metal tool inserts into plastic patterned products.The employment of a vast spectrum of micro/nano-structured geometries calls for methodologies that can be used for the estimation of replication fidelity.This study presents a number of product fingerprints,which propose multiple ways to characterize micro/nano structures in replication technologies.Replication fidelity yielded values above 80%and up to 96%depending on the considered product fingerprints and their definition.Thereafter,a correlation of the product fingerprint with the process parameters was found to optimize the replication process.Measurement uncertainty accompanies the analysis of the product fingerprints,enabling a standardized,robust,and quantitative methodology for process learning,modeling,and optimization.展开更多
In 1934, Hardy, Littlewood and Polya introduced a rearrangement inequality:∑i=1,aib(m+1-i)≤∑i=1maibp(i)≤∑i=1,aibi,in which the real sequences {ai}i and {bi}i are in increasing order, and p(i) indicates a ...In 1934, Hardy, Littlewood and Polya introduced a rearrangement inequality:∑i=1,aib(m+1-i)≤∑i=1maibp(i)≤∑i=1,aibi,in which the real sequences {ai}i and {bi}i are in increasing order, and p(i) indicates a random permutation. We now consider a sequence in lp with 1 〈 p 〈 ∞, and a sequence in a Banach lattice X. Instead of normal multiplication, we consider the tensor product of lp and X. We show that in Wittstock injective tensor product, lp iX, and Fremlin projective tensor product, lp FX, the rearrangement inequality still exists.展开更多
基金Supported by the National Natural Science Foundation of China(52192622,52304003).
文摘Based on the independently developed true triaxial multi-physical field large-scale physical simulation system of in-situ injection and production,we conducted physical simulation of long-term multi-well injection and production in the hot dry rocks of the Gonghe Basin,Qinghai Province,NW China.Through multi-well connectivity experiments,the spatial distribution characteristics of the natural fracture system in the rock samples and the connectivity between fracture and wellbore were clarified.The injection and production wells were selected to conduct the experiments,namely one injection well and two production wells,one injection well and one production well.The variation of several physical parameters in the production well was analyzed,such as flow rate,temperature,heat recovery rate and fluid recovery.The results show that under the combination of thermal shock and injection pressure,the fracture conductivity was enhanced,and the production temperature showed a downward trend.The larger the flow rate,the faster the decrease.When the local closed area of the fracture was gradually activated,new heat transfer areas were generated,resulting in a lower rate of increase or decrease in the mining temperature.The heat recovery rate was mainly controlled by the extraction flow rate and the temperature difference between injection and production fluid.As the conductivity of the leak-off channel increased,the fluid recovery of the production well rapidly decreased.The influence mechanisms of dominant channels and fluid leak-off on thermal recovery performance are different.The former limits the heat exchange area,while the latter affects the flow rate of the produced fluid.Both of them are important factors affecting the long-term and efficient development of hot dry rock.
基金Supported by the Chongqing Technical Innovation and Application&Development Special Project(cstc2020jscx-msxmX0189)。
文摘Permeability sensitivity to stress experiments were conducted on standard core samples taken from Wen 23 Gas Storage at multi-cycle injection and production conditions of the gas storage to study the change pattern of stress sensitivity of permeability.A method for calculating permeability under overburden pressure in the multi-cycle injection and production process was proposed,and the effect of stress sensitivity of reservoir permeability on gas well injectivity and productivity in UGS was analyzed.Retention rate of permeability decreased sharply first and then slowly with the increase of the UGS cycles.The stress sensitivity index of permeability decreased with the increase of cycle number of net stress variations in the increase process of net stress.The stress sensitivity index of permeability hardly changed with the increase of cycle number of net stress variations in the decrease process of net stress.With the increase of cycle number of net stress variation,the stress sensitivity index of permeability in the increase process of net stress approached that in the decrease process of net stress.The lower the reservoir permeability,the greater the irreversible permeability loss rate,the stronger the cyclic stress sensitivity,and the higher the stress sensitivity index of the reservoir,the stronger the reservoir stress sensitivity.The gas zones with permeability lower than 0.3’10-3 mm2 are not suitable as gas storage regions.Stress sensitivity of reservoir permeability has strong impact on gas well injectivity and productivity and mainly in the first few cycles.
基金supported by China Geological Survey Program(DD20190128)Natural Science Foundation of Hebei Province(No.E2022202082)。
文摘Inner Mongolia is abundant in geothermal resources,but the development and utilization of medium-depth geothermal resources for clean heating in winter is still in the preliminary stage compared with the neighboring provinces.In this paper,a recently developed geothermal heating system using the Mesozoic sandstone reservoirs in Baokang of Kailu Basin,Eastern Inner Mongolia was investigated,a threedimensional geological model of a pair of production and injection well was established,and numerical simulations on the long term operation performance were conducted and verified by pumping test and water level recovery test data.The effects of flow rates,the direction of wells,injection temperature and ratios on the flow field and water level in the thermal reservoir were analyzed.The results show that considering a 30-year operation period and a production rate from 90 m^(3)/h to 110 m^(3)/h,the optimum well spacing can be increased from 225 m to 245 m,with an average value of 235 m.With the decrease of the injection temperature,the cold front of the injection water has an increasing influence on the temperature in the production well.A complete injection or the principle of production according to injection is recommended in order to maintain the long-term operation stability.In addition,the location of the injection well should be arranged in the downstream of the natural flow field.The present results can provide a useful guide for the optimum design and performance prediction of geothermal wells,thus maintaining the production and injection balance and promoting the sustainable development and utilization of medium-depth and deep geothermal resources.
基金support from the Department of Chemical and Petroleum Engineering at the University of Calgary,the University of Calgary’s Canada First Research Excellence Fund program(the Global Research Initiative for Sustainable Low-Carbon Unconventional Resources)
文摘From a time value of revenue point of view,it is preferred that the time between reservoir stimulation and oil production response is small.Heavy oil combustion processes have a lag time between air injection and liquid production,but the common practice in production data analysis uses simultaneous injection and production data when seeking a relationship between them.In this research,the time scales of production for the Kerrobert toe-to-heel air injection(THAI)heavy oil project in Saskatchewan,Canada,is analyzed by using cross correlation analysis,i.e.time delay analysis between air injection and oil production.The results reveal two time scales with respect to production response with two distinctive recovery mechanisms:(1)a short time scale response(nearly instantaneous)where oil production peaks right after air injection(directly after opening production well)reflecting cold heavy oil production mechanisms,and(2)a longer time scale(of order of 100-300 days)response where peak production occurs associated with the collective phenomena of air injection,heat generating reactions,heat transfer,and finally,heated mobilized heavy oil drainage to the production well.This understanding of the two time scales and associated production mechanisms provides a basis for improving the performance of THAI.
基金Supported by the CNPC Major Scientific and Technological Project(2019B-3204)PetroChina Major Scientific and Technological Project(kt2020-16-01)。
文摘A dynamic transient flow analysis method considering complex factors such as the cyclic injection and production history in a gas field storage facility was established in view of the limitations of the existing methods for transient flow analysis and the characteristics of the injection-production operation of strongly heterogeneous gas reservoirs, and the corresponding theoretical charts were drawn. In addition, an injection-production dynamic transient flow analysis model named "three points and two stages" suitable for an underground gas storage(UGS) well with alternate working conditions was proposed. The "three points" refer to three time points during cyclic injection and production, namely, the starting point of gas injection for UGS construction, the beginning and ending points of the injection-production analysis stage;and the "two stages" refer to historical flow stage and injection-production analysis stage. The study shows that the dimensionless pseudo-pressure and dimensionless pseudo-pressure integral curves of UGS well flex downward in the early stage of the injection and production process, and the dimensionless pseudo-pressure integral derivative curve is convex during the gas production period and concave during the gas injection period, and the curves under different flow histories have atypical features. The new method present in this paper can analyze transient flow of UGS accurately. The application of this method to typical wells in Hutubi gas storage shows that the new method can fit the pressure history accurately, and obtain reliable parameters and results.
文摘Steam assisted gravity drainage (SAGD) technology has been industrialized popularization and application in our country, according to the characteristics of Xing group I SAGD experimental zone in liaohe oilfield, SAGD production stage injection-production parameters such as the operating pressure, Sub - Cool control, steam injection rate, steam dryness, production factor are studied and selected.
文摘This paper proposed a method of injection-production system adjustment to solve the problem that the water flooding effect was restricted because of the horizontal and vertical contradictions during the development process of fault block reservoirs. Considering the heterogeneity of reservoir, the Buckley-Leverett water flooding theory was applied to establish the relationship between the recovery and cumulative water injection. In order to achieve the goal of vertically balanced recovery of each section, the calculation method of vertical sectional injection allocation was proposed. The planar triangular seepage unit was assumed and sweep coefficients of different oil-water distribution patterns were characterized using multi-flow tube method. In order to balance and maximize the plane sweep coefficient, the calculation method of plane production system optimization was obtained. Then the injection-production system stereoscopic adjustment method based on equilibrium displacement was proposed with vertical sectional injection allocation and plane production system optimization. This method was applied to injection and production adjustment of BZ oilfield in southern Bohai. The effect of water control and oil increase was obvious. This method can greatly improve the effect of water flooding of offshore fault block reservoirs with the adjustment of injection-production system.
文摘The efficient exploitation of geothermal energy through enhanced geothermal systems(EGS)has been a relevant topic for hot dry rock(HDR)geothermal resources.When cryogenic fluid is injected into a thermal reservoir,improving heat exchange efficiency is key to achieving the optimal exploitation of HDR.In this paper,granite outcrops from Gonghe Basin were used as the testing sample.The natural fractures in the granite samples were relatively well developed.To simulate long-term injection and production from multi-wells in situ,physical ex-periments were performed in a newly-developed,in-house large-scale true triaxial experimental system.Geothermal extraction performance of an HDR was simulated for long-term injection and production operations.Simultaneously,the mode of one-injection and multiple-production wells was represented.In the paper,the ef-fects of the production-injection well spacing,the number of production wells and the injection rate on the production temperature and flow rate are discussed.The results show that,during long-term injection and pro-duction,there are two stages of production temperature variation,namely stabilization and attenuation.When the number of the production wells is increased,the heat extraction efficiency is accelerated.Moreover,competitive diversion of fluid among fractures occurred due to different conductivities.Furthermore,under different pro-duction modes,the production flow rate contributed differently to the heat extraction.Finally,the effect of the production-injection wells spacing on the heat exchange performance was analyzed;this is mainly reflected in the change of the effective heat exchange area between the rock and the injected fluid.The results emphasize the importance of designing an appropriate production mode and optimizing the injection-production parameters to ensure efficient HDR exploitation.
基金Supported by the the National Natural Science Foundation of China(No.52074318)PetroChina Company Limited Key Program for Science and Technology Development(kt2020-16-01).
文摘One-dimensional gas injection storage building and one-cycle injection-production modeling experiment,and two-dimensional flat core storage building and multi-cycle injection-production modeling experiment were carried out using one-dimensional long core and large two-dimensional flat physical models to find out the effects of reservoir physical properties and injection-production balance time on reservoir pore utilization efficiency,effective reservoir capacity formation and capacity-reaching cycle.The results show that reservoir physical properties and formation water saturation are the main factors affecting the construction and operation of gas-reservoir type underground gas storage.During the construction and operation of gas-reservoir type gas storage,the reservoir space can be divided into three types of working zones:high efficiency,low efficiency and ineffective ones.The higher the reservoir permeability,the higher the pore utilization efficiency is,the smaller the ineffective working zone is,or there is no ineffective working zone;the smaller the loss of injected gas is,and the higher the utilization rate of pores is.The better the reservoir physical properties,the larger the reservoir space and the larger the final gas storage capacity is.The higher the water saturation of the reservoir,the more the gas loss during gas storage capacity building and operation is.Optimizing injection-production regime to discharge water and reduce water saturation is an effective way to reduce gas loss in gas storage.In the process of multiple cycles of injection and production,there is a reasonable injection-production balance time,further extending the injection-production balance period after reaching the reasonable time has little contribution to the expansion of gas storage capacity.
基金Supported by the Basic Science Center Project of National Natural Science Foundation of China(72088101)National Natural Science Funded Project(52074345)CNPC Scientific Research and Technology Development Project(2020D-5001-21)。
文摘This paper summarizes the important progress in the field of oil and gas production engineering during the"Thirteenth Five-Year Plan"period of China,analyzes the challenges faced by the current oil and gas production engineering in terms of technological adaptability,digital construction,energy-saving and emission reduction,and points out the future development direction.During the"Thirteenth Five-Year Plan"period,series of important progresses have been made in five major technologies,including separated-layer injection,artificial lift,reservoir stimulation,gas well de-watering,and workover,which provide key technical support for continuous potential tapping of mature oilfields and profitable production of new oilfields.Under the current complex international political and economic situation,oil and gas production engineering is facing severe challenges in three aspects:technical difficulty increases in oil and gas production,insignificant improvements in digital transformation,and lack of core technical support for energy-saving and emission reduction.This paper establishes three major strategic directions and implementation paths,including oil stabilization and gas enhancement,digital transformation,and green and low-carbon development.Five key research areas are listed including fine separated-layer injection technology,high efficiency artificial lift technology,fine reservoir stimulation technology,long term gas well de-watering technology and intelligent workover technology,so as to provide engineering technical support for the transformation,upgrading and high-quality development of China’s oil and gas industry.
文摘This study investigated the relationship between a subject’s evaluation of injection molding machines (IMMs) and formal design features using Kansei engineering. This investigation used 12 word pairs to evaluate the IMM configurations and employed the semantic differential method to explore the perception of 60 interviewees of 12 examples. The relationship between product feature design and corresponding words was derived by multiple regression analysis. Factor analysis reveals that the 12 examples can be categorized as two styles—advanced style and succinct style. For the advanced style, an IMM should use a rectangular form for the clamping-unit cover and a full-cover for the injection-unit. For the succinct style, the IMM configuration should use a beveled form for the safety cover and a vertical rectangular form for the clamping-unit cover. Quantitative data and suggested guidelines for the relationship between design features and interviewee evaluations are useful to product designers when formulating design strategies.
文摘BZ Oilfield is a medium-sized oilfield with shallow delta facies deposits in Bohai Bay of China,compared with fluvial and delta facies oilfields,there is no mature experience for reference of reservoir configuration,well pattern arrangement and development model in offshore oilfields in China.In view of the difficulty in describing the reservoir configuration of shallow water delta,the single distributary sand dam in shallow water delta is characterized by well-seismic combination and multi-attribute constraints.The mathematical mechanism model of pinch-out position of sand body is established,fine characterization of BZ shallow water delta reservoir is put forward.The horizontal well pattern arrangement type for shallow water delta reservoir is proposed and the method of well pattern optimization based on vertical displacement theory is put forward.A method of inversion of reservoir connectivity using production dynamic data by numerical well testing is proposed and a new method for optimizing water injection rate in water injection wells is proposed aiming at the difficulty of recognizing injection-production connectivity of shallow water delta reservoirs.The fine configuration of BZ shallow water delta reservoir based on distributary sand dam is proposed,which guides the recognition of remaining oil distribution law.By deploying adjustment wells,the water flooding coincidence degree of actual drilling is 86% compared with that of pre-drilling prediction,which indicates that the research results of reservoir configuration can effectively guide the understanding of oilfield geology.Through the theoretical well arrangement type of vertical displacement of single sand body in horizontal wells of shallow water delta reservoir,a high water flooding recovery rate of 35% is achieved in primary well pattern.The connectivity coefficients of injection-production boundary of shallow water delta reservoir configuration are calculated,and the water injection distribution coefficients are obtained by normalizing the directional coefficients.This paper presents a configuration method based on multi-attribute fusion under the constraints of sedimentary process.In this paper,a shallow water delta reservoir configuration method based on multi-attribute fusion constrained by sedimentary process is proposed,and the injection-production connectivity coefficient and injection well distribution coefficient of the configuration boundary are calculated.
文摘As production automation systems have been and are becoming more and more complex, the task of quality assurance is increasingly challenging. Model-based testing is a research field addressing this challenge and many approaches have been suggested for different applications. The goal of this paper is to review these approaches regarding their suitability for the domain of production automation in order to identify current trends and research gaps. The different approaches are classified and clustered according to their main focus which is either testing and test case generation from some form of model automatons, test case generation from models used within the development process of production automation systems, test case generation from fault models or test case selection and regression testing.
基金National Basic Research Program of China (Grant No. 2004CB719802)Hi-Tech Research and Development Program of China (Grant No. 2006AA03Z113)
文摘Micro powder injection molding (μPIM),a miniaturized variant of powder injection molding,has advantages of shape complexity,applicability to many materials and good mechanical properties. Co-injection molding has been realized between met-als and ceramics on micro components,which become the first breakthrough within the PIM field. Combined with the prominent characteristics of high features/cost ratio,micro powder injection molding becomes a potential technique for large scale production of intricate and three-dimensional micro components or micro-structured components in microsystems technology (MST) field.
文摘Let φ be an Orlicz function that has a complementary function φ* and let lφ be an Orlicz sequence space. We prove a similar version of Rearrangement Inequality and Chebyshev's Sum Inequality in lφ FX, the Fremlin projective tensor product of lφ with a Banach lattice X, and in lφ iX, the Wittstock injective tensor product of lφ with a Banach lattice X.
文摘Suppose that E and F are separable Banach spaces, X and Y are independent symmetric E and F-valued random vectors respectively. This paper is devoted to the study of the central limit theorem for X Y in the injective and projective tensor product spaces E F and E F. Special attention is paid to l2 l2. In addition, two counter-examples are given.
基金The PROSURF project(“Surface Specifications and Process Chains for Functional Surfaces”,http://www.prosurf-project.eu/)is funded by the HORIZON 2020 program(Project ID:767589)the European Commission.MADE DIGITAL(Project ID:6151-00006B),Manufacturing Academy of Denmark(http://en.made.dk/),Work Package WP3“Digital manufacturing processes”,is funded by Innovation Fund Denmark(https://innovationsfonden.dk/en).
文摘Replication processes for the manufacturing of micro/nano-structured components are characterized by a certain degree of precision and accuracy.The transcription loss,or replication fidelity,defines the geometrical and dimensional correspondence of micro/nano-structure from metal tool inserts into plastic patterned products.The employment of a vast spectrum of micro/nano-structured geometries calls for methodologies that can be used for the estimation of replication fidelity.This study presents a number of product fingerprints,which propose multiple ways to characterize micro/nano structures in replication technologies.Replication fidelity yielded values above 80%and up to 96%depending on the considered product fingerprints and their definition.Thereafter,a correlation of the product fingerprint with the process parameters was found to optimize the replication process.Measurement uncertainty accompanies the analysis of the product fingerprints,enabling a standardized,robust,and quantitative methodology for process learning,modeling,and optimization.
文摘In 1934, Hardy, Littlewood and Polya introduced a rearrangement inequality:∑i=1,aib(m+1-i)≤∑i=1maibp(i)≤∑i=1,aibi,in which the real sequences {ai}i and {bi}i are in increasing order, and p(i) indicates a random permutation. We now consider a sequence in lp with 1 〈 p 〈 ∞, and a sequence in a Banach lattice X. Instead of normal multiplication, we consider the tensor product of lp and X. We show that in Wittstock injective tensor product, lp iX, and Fremlin projective tensor product, lp FX, the rearrangement inequality still exists.