期刊文献+
共找到847篇文章
< 1 2 43 >
每页显示 20 50 100
Pyroptosis,ferroptosis,and autophagy in spinal cord injury:regulatory mechanisms and therapeutic targets
1
作者 Qingcong Zheng Du Wang +1 位作者 Rongjie Lin Weihong Xu 《Neural Regeneration Research》 SCIE CAS 2025年第10期2787-2806,共20页
Regulated cell death is a form of cell death that is actively controlled by biomolecules.Several studies have shown that regulated cell death plays a key role after spinal cord injury.Pyroptosis and ferroptosis are ne... Regulated cell death is a form of cell death that is actively controlled by biomolecules.Several studies have shown that regulated cell death plays a key role after spinal cord injury.Pyroptosis and ferroptosis are newly discovered types of regulated cell deaths that have been shown to exacerbate inflammation and lead to cell death in damaged spinal cords.Autophagy,a complex form of cell death that is interconnected with various regulated cell death mechanisms,has garnered significant attention in the study of spinal cord injury.This injury triggers not only cell death but also cellular survival responses.Multiple signaling pathways play pivotal roles in influencing the processes of both deterioration and repair in spinal cord injury by regulating pyroptosis,ferroptosis,and autophagy.Therefore,this review aims to comprehensively examine the mechanisms underlying regulated cell deaths,the signaling pathways that modulate these mechanisms,and the potential therapeutic targets for spinal cord injury.Our analysis suggests that targeting the common regulatory signaling pathways of different regulated cell deaths could be a promising strategy to promote cell survival and enhance the repair of spinal cord injury.Moreover,a holistic approach that incorporates multiple regulated cell deaths and their regulatory pathways presents a promising multi-target therapeutic strategy for the management of spinal cord injury. 展开更多
关键词 AUTOPHAGY cell death ferroptosis INFLAMMATION pathological mechanisms PYROPTOSIS regulated cell death regulatory pathways spinal cord injury therapeutic targets
下载PDF
Crosstalk among mitophagy,pyroptosis,ferroptosis,and necroptosis in central nervous system injuries 被引量:1
2
作者 Li Zhang Zhigang Hu +1 位作者 Zhenxing Li Yixing Lin 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第8期1660-1670,共11页
Central nervous system injuries have a high rate of resulting in disability and mortality;however,at present,effective treatments are lacking.Programmed cell death,which is a genetically determined fo rm of active and... Central nervous system injuries have a high rate of resulting in disability and mortality;however,at present,effective treatments are lacking.Programmed cell death,which is a genetically determined fo rm of active and ordered cell death with many types,has recently attra cted increasing attention due to its functions in determining the fate of cell survival.A growing number of studies have suggested that programmed cell death is involved in central nervous system injuries and plays an important role in the progression of brain damage.In this review,we provide an ove rview of the role of programmed cell death in central nervous system injuries,including the pathways involved in mitophagy,pyroptosis,ferroptosis,and necroptosis,and the underlying mechanisms by which mitophagy regulates pyroptosis,ferroptosis,and necro ptosis.We also discuss the new direction of therapeutic strategies to rgeting mitophagy for the treatment of central nervous system injuries,with the aim to determine the connection between programmed cell death and central nervous system injuries and to identify new therapies to modulate programmed cell death following central nervous system injury.In conclusion,based on these properties and effects,interventions targeting programmed cell death could be developed as potential therapeutic agents for central nervous system injury patients. 展开更多
关键词 central nervous system injuries death pyroptosis ferroptosis inflammation MITOPHAGY NECROPTOSIS programmed cell
下载PDF
Combination of mild therapeutic hypothermia and adipose-derived stem cells for ischemic brain injury 被引量:9
3
作者 Kai Zhao Rui Li +11 位作者 Sheng Bi Yu Li Long Liu Yu-Long Jia Peng Han Chang-Cong Gu Xi-Ze Guo Wan-Ping Zhang Chun Wang Chun-Ying Pei Lin-Lu Tian Li-Xian Li 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第10期1759-1770,共12页
Mild therapeutic hypothermia has been shown to mitigate cerebral ischemia, reduce cerebral edema, and improve the prognosis of patients with cerebral ischemia. Adipose-derived stem cell-based therapy can decrease neur... Mild therapeutic hypothermia has been shown to mitigate cerebral ischemia, reduce cerebral edema, and improve the prognosis of patients with cerebral ischemia. Adipose-derived stem cell-based therapy can decrease neuronal death and infiltration of inflammatory cells, exerting a neuroprotective effect. We hypothesized that the combination of mild therapeutic hypothermia and adipose-derived stem cells would be neuroprotective for treatment of stroke. A rat model of transient middle cerebral artery occlusion was established using the nylon monofilament method. Mild therapeutic hypothermia(33°C) was induced after 2 hours of ischemia. Adipose-derived stem cells were administered through the femoral vein during reperfusion. The severity of neurological dysfunction was measured by a modified Neurological Severity Score Scaling System. The area of the infarct lesion was determined by 2,3,5-triphenyltetrazolium chloride staining. Apoptotic neurons were detected by terminal deoxynucleotidyl transferase-mediated d UTP-biotin nick end labeling(TUNEL) staining. The regeneration of microvessels and changes in the glial scar were detected by immunofluorescence staining. The inflammatory responses after ischemic brain injury were evaluated by in situ staining using markers of inflammatory cells. The expression of inflammatory cytokines was measured by reverse transcription-polymerase chain reaction. Compared with mild therapeutic hypothermia or adipose-derived stem cell treatment alone, their combination substantially improved neurological deficits and decreased infarct size. They synergistically reduced the number of TUNEL-positive cells and glial fibrillary acidic protein expression, increased vascular endothelial growth factor levels, effectively reduced inflammatory cell infiltration and down-regulated the m RNA expression of the proinflammatory cytokines interleukin-1β, tumor necrosis factor-α and interleukin-6. Our findings indicate that combined treatment is a better approach for treating stroke compared with mild therapeutic hypothermia or adipose-derived stem cells alone. 展开更多
关键词 nerve regeneration brain injury stroke rats transient middle cerebrum artery occlusion cerebral resuscitation mild therapeutic hypothermia adipose-derived stem cells combination therapy neuroprotection neuronal cell death neural regeneration
下载PDF
Ca^(2+) involvement in activation of extracellular-signal- regulated-kinase 1/2 and m-calpain after axotomy of the sciatic nerve 被引量:4
4
作者 Lisa B. Martensson Charlotta Lindwall Blom Lars B. Dahlin 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第4期623-628,共6页
Detailed mechanisms behind regeneration after nerve injury, in particular signal transduction and the fate of Schwann cells (SCs), are poorly understood. Here, we investigated axotomy-induced activation of extracell... Detailed mechanisms behind regeneration after nerve injury, in particular signal transduction and the fate of Schwann cells (SCs), are poorly understood. Here, we investigated axotomy-induced activation of extracellular- signal-regulated kinase-1/2 (ERK1/2; important for proliferation) and m-calpain in vitro, and the relation to Ca2+ deletion and Schwann cell proliferation and death after rat sciatic nerve axotomy. Nerve segments were cultured for up to 72 hours with and without ethylene glycol-bis(β-aminoethyl ether)- N,N,N',N'-tetraacetic acid (EGTA). In some experiments, 5-bromo-2′-deoxyuridine (BrdU) was added during the last 24 hours to detect proliferating cells and propidium iodide (PI) was added at the last hour to detect dead and/or dying cells. Immunohistochemistry of sections of the cultured nerve segments was performed to label m-calpain and the phosphorylated and activated form of ERK1/2. The experiments revealed that immunoreactivity for p-ERK1/2 increased with time in organotypically cultured SCs. p-ERK1/2 and m-calpain were also observed in axons. A significant increase in the number of dead or dying SCs was observed in nerve segments cultured for 24 hours. When deprived of Ca2+, activation of axonal m-calpain was reduced, whereas p-ERK1/2 was increased in SCs. Ca2+ deprivation also significantly reduced the number of proliferating SCs, and instead increased the number of dead or dying SCs. Ca2+ seems to play an important role in activation of ERK1/2 in SCs and in SC survival and proliferation. In addition, extracellular Ca2+ levels are also required for m-calpain activation and up-regulation in axons. Thus, regulation of Ca2+ levels is likely to be a useful method to promote SC proliferation. 展开更多
关键词 nerve regeneration P-ERK1/2 M-CALPAIN nerve injury signal transduction cell proliferation cell death ACTIVATION AXOTOMY sciatic nerve neural regeneration
下载PDF
Molecular and metabolic landscape of adenosine triphosphateinduced cell death in cardiovascular disease
5
作者 Wei Wang Xue-Mei Wang +4 位作者 Hao-Long Zhang Rui Zhao Yong Wang Hao-Ling Zhang Zhi-Jing Song 《World Journal of Cardiology》 2024年第12期689-706,共18页
The maintenance of intracellular and extracellular adenosine triphosphate(ATP)levels plays a pivotal role in cardiac function.In recent years,burgeoning at-tention has been directed towards ATP-induced cell death(AICD... The maintenance of intracellular and extracellular adenosine triphosphate(ATP)levels plays a pivotal role in cardiac function.In recent years,burgeoning at-tention has been directed towards ATP-induced cell death(AICD),revealing it as a distinct cellular demise pathway triggered by heightened extracellular ATP concentrations,distinguishing it from other forms of cell death such as apoptosis and necrosis.AICD is increasingly acknowledged as a critical mechanism me-diating the pathogenesis and progression of various cardiovascular maladies,encompassing myocardial ischemia-reperfusion injury,sepsis-induced cardiomy-opathy,hypertrophic cardiomyopathy,arrhythmia,and diabetic cardiomyopathy.Consequently,a comprehensive understanding of the molecular and metabolic underpinnings of AICD in cardiac tissue holds promise for the prevention and amelioration of cardiovascular diseases.This review first elucidates the vital physiological roles of ATP in the cardiovascular system,subsequently delving into the intricate molecular mechanisms and metabolic signatures governing AICD.Furthermore,it addresses the potential therapeutic targets implicated in mitigating AICD for treating cardiovascular diseases,while also delineating the current constraints and future avenues for these innovative therapeutic targets,thereby furnishing novel insights and strategies for the prevention and management of cardiovascular disorders. 展开更多
关键词 Adenosine triphosphate induced cell death Cardiovascular diseases Myocardial ischemia-reperfusion injury Molecular mechanisms Metabolic pathways
下载PDF
The influence of pressure injury risk on the association between left ventricular ejection fraction and all-cause mortality in patients with acute myocardial infarction 80 years or older 被引量:1
6
作者 Bao-tao Huang Yi-heng Cheng +5 位作者 Bo-sen Yang Yi-ke Zhang Fang-yang Huang Yong Peng Xiao-bo Pu Mao Chen 《World Journal of Emergency Medicine》 SCIE CAS CSCD 2023年第2期112-121,共10页
BACKGROUND: We aimed to investigate whether the pressure injury risk mediates the association of left ventricular ejection fraction(LVEF) with all-cause death in patients with acute myocardial infarction(AMI) aged 80 ... BACKGROUND: We aimed to investigate whether the pressure injury risk mediates the association of left ventricular ejection fraction(LVEF) with all-cause death in patients with acute myocardial infarction(AMI) aged 80 years or older.METHODS: This retrospective cohort study included 677 patients with AMI aged 80 years or older from a tertiary-level hospital. Pressure injury risk was assessed using the Braden scale at admission, and three risk groups(low/minimal, intermediate, high) were defined according to the overall score of six different variables. LVEF was measured during the index hospitalization for AMI. All-cause death after hospital discharge was the primary outcome.RESULTS: Over a median follow-up period of 1,176 d(interquartile range [IQR], 722–1,900 d), 226(33.4%) patients died. Multivariate Cox regression analysis showed that reduced LVEF was associated with an increased risk of all-cause death only in the high-risk group of pressure injury(adjusted hazard ratios [HR]=1.81, 95% confidence interval [CI]: 1.03–3.20;P=0.040), but not in the low/minimal-(adjusted HR=1.29, 95%CI: 0.80–2.11;P=0.299) or intermediate-risk groups(adjusted HR=1.14, 95%CI: 0.65–2.02;P=0.651). Significant interactions were detected between pressure injury risk and LVEF(adjusted P=0.003). The cubic spline with hazard ratio plot revealed a distinct shaped curve relation between LVEF and all-cause death among different pressure injury risk groups.CONCLUSIONS: In older patients with AMI, the risk of pressure injury mediated the association between LVEF and all-cause death. The classification of older patients for both therapy and prognosis assessment appears to be improved by the incorporation of pressure injury risk assessment into AMI care management. 展开更多
关键词 Pressure injuries Left ventricular ejection fraction DEATH GERIATRICS Myocardial infarction
下载PDF
Research Progress on the Pathogenesis of Acute Lung Injury(ALI)
7
作者 Jincun LI Wenyu MA Gang LI 《Medicinal Plant》 2024年第4期122-128,共7页
In this review,the databases searched were PubMed and Web of Science.It is believed that the main causes of acute lung injury(ALI)and acute respiratory distress syndrome(ARDS)are inflammatory response disorders,excess... In this review,the databases searched were PubMed and Web of Science.It is believed that the main causes of acute lung injury(ALI)and acute respiratory distress syndrome(ARDS)are inflammatory response disorders,excessive oxidative stress,cell death,endoplasmic reticulum stress,coagulation dysfunction,and weakened aquaporin function. 展开更多
关键词 Acute lung injury(ALI) Pathogenesis Inflammatory responses Oxidative stress Cell death Endoplasmic reticulum stress COAGULOPATHY Downregulation of aquaporin
下载PDF
Assessment of the Impacts of Tropical Cyclones Idai to the Western Coastal Area and Hinterlands of the South Western Indian Ocean 被引量:1
8
作者 Kombo Hamad Kai Sarah E. Osima +2 位作者 Mtongori Habiba Ismail Pacal Waniha Hamad Asya Omar 《Atmospheric and Climate Sciences》 2021年第4期812-840,共29页
Tropical Cyclones (TCs) are among the atmospheric events which may trigger/enhance the occurrence of disasters to the society in most world basins including <span style="font-family:Verdana;">the </... Tropical Cyclones (TCs) are among the atmospheric events which may trigger/enhance the occurrence of disasters to the society in most world basins including <span style="font-family:Verdana;">the </span><span style="font-family:;" "=""><span style="font-family:Verdana;">Southwestern Indian Ocean (SWIO). This study analyzed the dynamics and the impacts of the Tropical Cyclone (TC) Idai (4</span><sup><span style="font-family:Verdana;">th</span></sup><span style="font-family:Verdana;">-21</span><sup><span style="font-family:Verdana;">st</span></sup><span style="font-family:Verdana;"> March, 2019) which devastated most of the SWIO countries. The study used the Reanalysis 1 products of daily zonal (u) and meridional (v) winds, Sea Surface Temperatures (SSTs), amount of Precipitable Water (PRW), </span></span><span style="font-family:Verdana;">and relative humidity</span><span style="font-family:Verdana;"> (Rh). The dynamics and movements of Idai w</span><span style="font-family:Verdana;">ere</span><span style="font-family:Verdana;"> analyzed using the wind circulation at 850, 700, 500 and 200 mb, where the TC dynamic variables like vertical wind shear, vorticity, and the mean zonal wind were calculated using u and v components. Using the open Grid Analysis and Display System (GrADS) software the data was processed into three</span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">time epochs of pre, during and post;and then analyzed to feature the state of the atmosphere before (pre), during and post TC Idai using all datasets. </span><span style="font-family:Verdana;">The </span><span style="font-family:;" "=""><span style="font-family:Verdana;">amount of precipitable water was used to map the rainfall on pre, during, and post Idai as well as during its landfall. The results revealed that dynamics of TC Idai was intensifying the weather (over Mozambique) and clearing the weather equatorward or southward of 12<span style="white-space:nowrap;">&#176;</span>S, with low vertical wind shear over the landfall areas (</span><span style="white-space:nowrap;font-family:Verdana;">-</span><span style="font-family:Verdana;"></span><span style="font-family:Verdana;">3 to 3 m/s) and higher shear values (10 - 40 m/s) northward and southward of the Mozambican channel. Higher moisture content (80 - 90%) and higher PRW (40 - 60 mm/day) mapped during Idai over the lowland areas of Mozambique propagating westward. Higher low</span></span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">level vorticity values were also mapped over the landfall areas. More results revealed that countries laying equatorward of 12<span style="white-space:nowrap;">&#176;</span>S</span><span style="font-family:Verdana;">,</span><span style="font-family:Verdana;"> e.g.</span><span style="font-family:Verdana;">,</span><span style="font-family:Verdana;"> the northern coastal areas of Kenya (Turkana and Baringo) and Tanzania, Idai disrupted the 2019 March to May (MAM) seasonal rainfall by inducing long dry spell which accelerated the famine over the northeastern Kenya (Turkana). Moreover, results revealed that the land falling of Idai triggered intensive flooding which affected </span><span style="font-family:Verdana;">a </span><span style="font-family:Verdana;">wide spectrum of socio</span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">economic livelihoods including significant loss of lives, injuries, loss of material wealth, infrastructure;indeed, people were forced to le</span><span style="font-family:Verdana;">ave</span><span style="font-family:Verdana;"> their houses for quite </span><span style="font-family:Verdana;">a </span><span style="font-family:Verdana;">longtime;water</span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">born</span><span style="font-family:Verdana;">e</span><span style="font-family:Verdana;"> diseases like malaria, cholera among others were experienced. Furthermore, results and reports revealed that </span><span style="font-family:Verdana;">a </span><span style="font-family:Verdana;">large amount of funds were raised to combat the impacts of Idai. For instance, USAID/OFDA used about $14,146,651 for human aid and treatment of flood</span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">prone diseases like Cholera in Mozambique ($13,296,651), Zimbabwe ($100,000), and Malawi ($280,000), respectively. Also a death toll of about 602 in Mozambique and 344 in Zimbabwe, and more than 2500 cases of injured people were reported</span><span style="font-family:Verdana;">.</span><span style="font-family:Verdana;"> Conclusively the study has shown that TCs including Idai and other are among the deadliest natural phenomenon which great affects the human and his environments, thus extensive studies on TCs frequency, strength, tracks as well </span><span style="font-family:Verdana;">as </span><span style="font-family:Verdana;">their coast benefit analysis should be conducted to reduce the societal impacts of these TCs.</span> 展开更多
关键词 Tropical Cyclones Zonal and Meridional Winds Precipitable Water Vertical Wind Shear Low-Level Vorticity Water-Borne Diseases deaths and injuries
下载PDF
Functional phenotyping of microglia highlights the dark relationship between chronic traumatic brain injury and normal age-related pathology
9
作者 Rodney M.Ritzel Junfang Wu 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第4期811-813,共3页
Traumatic brain injury(TBI) is a major cause of death and disability worldwide. Age-related TBI differences demonstrate the third peak of prevalence and incidence of TBI within the elderly population. This is due to t... Traumatic brain injury(TBI) is a major cause of death and disability worldwide. Age-related TBI differences demonstrate the third peak of prevalence and incidence of TBI within the elderly population. This is due to the elderly being at a higher risk of sustaining falls, which have been identified as the main cause(40–50%) of TBI. 展开更多
关键词 TBI death injury
下载PDF
Severe Trauma of Uterus and the Right Limb during a Road Accident at the Department of Obstetrics and Gynecology of the Teaching Hospital Souro Sanou of Bobo-Dioulasso: A Case Report and Review of Literature
10
作者 Bambara Moussa Ouedraogo Issa +2 位作者 Diallo Malick Yaro Biessan Komboïgo Evelyne 《Open Journal of Obstetrics and Gynecology》 2021年第12期1836-1842,共7页
The authors reported a case of trauma with uterus rupture at 35 weeks gestation with fetal death in uterus with a trauma of the right</span></span><span><span><span style="font-family:&... The authors reported a case of trauma with uterus rupture at 35 weeks gestation with fetal death in uterus with a trauma of the right</span></span><span><span><span style="font-family:""> </span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">limb injuries during a serious road accident. </span><b><span style="font-family:Verdana;">Aim:</span></b><span style="font-family:Verdana;"> the aim is to show the increasing of road accident with the motorized tricycle and their many risks for pregnant woman. </span><b><span style="font-family:Verdana;">Case Presentation:</span></b><span style="font-family:Verdana;"> our patient was thrown from the back cargo of a motorized tricycle (three-wheeled vehicle) after a collision with a truck in a rural area from 150 km to Bobo-Dioulasso. She sustained a closed abdominal injury and a severe right lower limb open injury. At admission in our depart</span><span style="font-family:Verdana;">ment in the Teaching Hospital, she was conscious, shocked with hemodyn</span><span style="font-family:Verdana;">amic instability, including low blood pressure (75/52 mmHg), rapid heart rate (140 pulses per minute), rapid breath rate (40 per minute), and cold extremities. Abdominal examination was painful with uterine hypertonia, 28 cm height uterus, and no fetal heart heartbeat. A laparotomy in</span></span></span></span><span><span><span style="font-family:""> </span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">urgency revealed a rupture of the uterus fundus with a dead fetus. A conservative surgical treatment was performed. An open trauma to the right limb was managed by the orthopedists with a good outcome. </span><b><span style="font-family:Verdana;">Conclusion:</span></b><span style="font-family:Verdana;"> Accident trauma during pregnancy is becoming more and more frequent with the increase in means of transport in urban and inter urban areas. The transport ways of the pregnant woman must take into account her safety and that of the fetus. 展开更多
关键词 Road Accident Uterus Rupture Fetal Death Right Limb Injury Good Outcome
下载PDF
Dissecting the molecular pathophysiology of drug-induced liver injury 被引量:22
11
作者 Hui Ye Leonard J Nelson +2 位作者 Manuel Gómez del Moral Eduardo Martínez-Naves Francisco Javier Cubero 《World Journal of Gastroenterology》 SCIE CAS 2018年第13期1373-1385,共13页
Drug-induced liver injury(DILI) has become a major topic in the field of Hepatology and Gastroenterology. DILI can be clinically divided into three phenotypes: hepatocytic, cholestatic and mixed. Although the clinical... Drug-induced liver injury(DILI) has become a major topic in the field of Hepatology and Gastroenterology. DILI can be clinically divided into three phenotypes: hepatocytic, cholestatic and mixed. Although the clinical manifestations of DILI are variable and the pathogenesis complicated, recent insights using improved preclinical models, have allowed a better understanding of the mechanisms that trigger liver damage. In this review, we will discuss the pathophysiological mechanisms underlying DILI. The toxicity of the drug eventually induces hepatocellular damage through multiple molecular pathways, including direct hepatic toxicity and innate and adaptive immune responses. Drugs or their metabolites, such as the common analgesic, acetaminophen, can cause direct hepatic toxicity through accumulation of reactive oxygen species and mitochondrial dysfunction. The innate and adaptive immune responses play also a very important role in the occurrence of idiosyncratic DILI. Furthermore, we examine common forms of hepatocyte death and their association with the activation of specific signaling pathways. 展开更多
关键词 signaling PATHWAYS ACETAMINOPHEN DRUG-INDUCED liver injury cell DEATH reactive oxygen species
下载PDF
Comparison of labeling methods and time course of traumatic brain injury-induced cell death in mice 被引量:6
12
作者 Chengliang Luo Xiping Chen +5 位作者 Hong Ni Qianqian Li Rui Yang Yuxia Sun Guangyou Zhu Luyang Tao 《Neural Regeneration Research》 SCIE CAS CSCD 2010年第9期706-709,共4页
BACKGROUND:Various molecular mechanisms of cell death following traumatic brain injury have been previously described.However,the time course of cell death remains unclear.TUNEL and Fluoro-Jade B labeling have been w... BACKGROUND:Various molecular mechanisms of cell death following traumatic brain injury have been previously described.However,the time course of cell death remains unclear.TUNEL and Fluoro-Jade B labeling have been widely used to label apoptotic cells and neuronal degeneration.Propidium iodide (PI) functions as a biomarker of cell death in vivo.OBJECTIVE:To explore the role of PI labeling compared to TUNEL and Fluoro-Jade B staining for detecting neural cell death,and to observe time course of traumatic brain injury-induced cell death in mice.DESIGN,TIME AND SETTING:A randomized,controlled,animal experiment was performed at the Laboratory of Aging and Nervous Diseases,Soochow University from September 2007 to December 2008.MATERIALS:PI (B1221) was purchased from Sigma,USA.TUNEL kit was purchased from Roche Molecular Biochemicals,USA.Fluoro-Jade B was purchased from Chemicon,USA.METHODS:A total of 70 healthy,male,Kunming mice were randomly assigned to sham-surgery (n = 5) and model (n = 65) groups.Traumatic brain injury was established using the controlled cortical impact method.PI was intraperitoneally injected at 1 hour prior to animal sacrifice.MAIN OUTCOME MEASURES:TUNEL,Fluoro-Jade B,and Pl-positive cells were quantified using a double-labeling method to determine the time course of traumatic brain injury-induced cell death.RESULTS:PI labeled cells in an earlier phase of cell death than TUNEL and Fluoro-Jade B labeling.Pl-positive cells were observed immediately following injury,and the numbers rapidly increased in injured brain areas at 1 hour,peaked at 24-48 hours,and subsequently decreased at 3-21 days post-injury.TUNEL-labeled cells were significantly increased at 12 hours,while Fluoro-Jade B-labeled cells were increased at 6 hours after injury,with cells still visible at 6-48 hours post-injury.Moreover,a greater number of Pl-positive cells were observed compared to TUNEL- and Fluoro-Jade B-labeled cells.CONCLUSION:PI labeling is more sensitive and reliable than TUNEL and Fluoro-Jade B staining for detecting cell death following traumatic brain injury.Moreover,PI labeling can function as a reliable marker to estimate the entire time course of cell death. 展开更多
关键词 propidium iodide cell death traumatic brain injury neural regeneration
下载PDF
Tauroursodeoxycholic acid and 4-phenyl butyric acid alleviate endoplasmic reticulum stress and improve prognosis of donation after cardiac death liver transplantation in rats 被引量:8
13
作者 Hao Lu Ling Lu +5 位作者 Zhen-Chao Xu Yun-Jie Lu Bo Zhao Lin Zhuang Bao-Bing Hao Feng Zhang 《Hepatobiliary & Pancreatic Diseases International》 SCIE CAS 2014年第6期586-593,共8页
BACKGROUND: Inevitable warm ischemia time before organ procurement aggravates posttransplantation ischemia- reperfusion injury. Endoplasmic reticulum (ER) stress is involved in ischemia-reperfusion injury, but its ... BACKGROUND: Inevitable warm ischemia time before organ procurement aggravates posttransplantation ischemia- reperfusion injury. Endoplasmic reticulum (ER) stress is involved in ischemia-reperfusion injury, but its role in donation after cardiac death (DCD) liver transplantation is not clear and the effect of ER stress inhibitors, tauroursodeoxycholic acid (TUDCA) and 4-phenyl butyric acid (PBA), on the prognosis of recipient of DCD liver transplantation remains unclear. METHODS: Male Sprague-Dawley rats (8-10 weeks) were randomly divided into control group: liver grafts without warm ischemia were implanted; DCD group: warm ischemia time of the liver grafts was 60 minutes; TUDCA and PBA groups: based on the DCD group, donors were intraperitoneally injected with TUDCA or PBA 30 minutes before the organ procurements. Serum aminotransferase levels, oxidative stress activation and expression of ER stress signal molecules were evaluated. Pathological examinations were performed. The survivals of the recipients in each group were compared for 14 days.RESULTS: Compared with the control group, DCD rats had significantly higher levels of serum aminotransferase at 6 hours, 1 day and 3 days after operation (P〈0.01, 0.01 and 0.05, respectively) and oxidative indices (P〈0.01 for both malondialdehyde and 8-hydroxy deoxyguanosine), more severe liver damage (P〈0.01) and up-regulated ER stress signal expressions (P〈0.01 for GRP78, phos-eIF2al, CHOP, ATF-4, ATF-6, PERK, XBP-1 and pro-caspase-12). All recipients died within 3 days after liver transplantation. Administration of TUDCA or PBA significantly decreased aminotransferase levels (P〈0.05), increased superoxide dismutase activities (P〈0.01), alleviated liver damage (P〈0.01), down-regulated ER stress signal expressions (P〈0.01) and improved postoperative survivals (P〈0.01). CONCLUSIONS: ER stress was involved with DCD liver trans- plantation in rats. Preoperative intraperitoneally injection of TUDCA or PBA protected ER stress and improved prognosis. 展开更多
关键词 donation after cardiac death liver transplantation ischemia-reperfusion injury endoplasmic reticulum stress
下载PDF
Ferroptosis:a critical player and potential therapeutic target in traumatic brain injury and spinal cord injury 被引量:11
14
作者 Qing-Sheng Li Yan-Jie Jia 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第3期506-512,共7页
Ferroptosis,a new non-necrotizing programmed cell death(PCD),is driven by iron-dependent phospholipid peroxidation.Ferroptosis plays a key role in secondary traumatic brain injury and secondary spinal cord injury and ... Ferroptosis,a new non-necrotizing programmed cell death(PCD),is driven by iron-dependent phospholipid peroxidation.Ferroptosis plays a key role in secondary traumatic brain injury and secondary spinal cord injury and is closely related to inflammation,immunity,and chronic injuries.The inhibitors against ferroptosis effectively improve iron homeostasis,lipid metabolism,redox stabilization,neuronal remodeling,and functional recovery after trauma.In this review,we elaborate on the latest molecular mechanisms of ferroptosis,emphasize its role in secondary central nervous trauma,and update the medicines used to suppress ferroptosis following injuries. 展开更多
关键词 ferroptosis immune response INFLAMMATION iron homeostasis lipid metabolism medicine programmed cell death spinal cord injury traumatic brain injury
下载PDF
Role of axon resealing in retrograde neuronal death and regeneration after spinal cord injury 被引量:4
15
作者 William Rodemer Michael E.Selzer 《Neural Regeneration Research》 SCIE CAS CSCD 2019年第3期399-404,共6页
Spinal cord injury leads to persistent behavioral deficits because mammalian central nervous system axons fail to regenerate. A neuron's response to axon injury results from a complex interplay of neuron-intrinsic... Spinal cord injury leads to persistent behavioral deficits because mammalian central nervous system axons fail to regenerate. A neuron's response to axon injury results from a complex interplay of neuron-intrinsic and environmental factors. The contribution of axotomy to the death of neurons in spinal cord injury is controversial because very remote axotomy is unlikely to result in neuronal death, whereas death of neurons near an injury may reflect environmental factors such as ischemia and inflammation. In lampreys, axotomy due to spinal cord injury results in delayed apoptosis of spinal-projecting neurons in the brain, beyond the extent of these environmental factors. This retrograde apoptosis correlates with delayed resealing of the axon, and can be reversed by inducing rapid membrane resealing with polyethylene glycol. Studies in mammals also suggest that polyethylene glycol may be neuroprotective, although the mechanism(s) remain unclear. This review examines the early, mechanical, responses to axon injury in both mammals and lampreys, and the potential of polyethylene glycol to reduce injury-induced pathology. Identifying the mechanisms underlying a neuron's response to axotomy will potentially reveal new therapeutic targets to enhance regeneration and functional recovery in humans with spinal cord injury. 展开更多
关键词 AXON resealing REGENERATION RETROGRADE neuronal death spinal CORD injury sea LAMPREY PEG mitochondrial dysfunction calcium signaling
下载PDF
Aetiology and risk factors of ischaemic cholangiopathy after liver transplantation 被引量:18
16
作者 Moustafa Mabrouk Mourad Abdullah Algarni +1 位作者 Christos Liossis Simon R Bramhall 《World Journal of Gastroenterology》 SCIE CAS 2014年第20期6159-6169,共11页
Liver transplantation (LT) is the best treatment for end-stage hepatic failure, with an excellent survival rates over the last decade. Biliary complications after LT pose a major challenge especially with the increasi... Liver transplantation (LT) is the best treatment for end-stage hepatic failure, with an excellent survival rates over the last decade. Biliary complications after LT pose a major challenge especially with the increasing number of procured organs after circulatory death. Ischaemic cholangiopathy (IC) is a set of disorders characterized by multiple diffuse strictures affecting the graft biliary system in the absence of hepatic artery thrombosis or stenosis. It commonly presents with cholestasis and cholangitis resulting in higher readmission rates, longer length of stay, repeated therapeutic interventions, and eventually re-transplantation with consequent effects on the patient&#x02019;s quality of life and increased health care costs. The pathogenesis of IC is unclear and exhibits a higher prevalence with prolonged ischaemia time, donation after circulatory death (DCD), rejection, and cytomegalovirus infection. The majority of IC occurs within 12 mo after LT. Prolonged warm ischaemic times predispose to a profound injury with a subsequently higher prevalence of IC. Biliary complications and IC rates are between 16% and 29% in DCD grafts compared to between 3% and 17% in donation after brain death (DBD) grafts. The majority of ischaemic biliary lesions occur within 30 d in DCD compared to 90 d in DBD grafts following transplantation. However, there are many other risk factors for IC that should be considered. The benefits of DCD in expanding the donor pool are hindered by the higher incidence of IC with increased rates of re-transplantation. Careful donor selection and procurement might help to optimize the utilization of DCD grafts. 展开更多
关键词 Ischaemic cholangiopathy Biliary complications Orthotopic liver transplantation Donation after circulatory death Reperfusion injury Cold ischaemia time
下载PDF
Clemastine in remyelination and protection of neurons and skeletal muscle after spinal cord injury 被引量:6
17
作者 Ali Myatich Azizul Haque +1 位作者 Christopher Sole Naren L.Banik 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第5期940-946,共7页
Spinal cord injuries affect nearly five to ten individuals per million every year. Spinal cord injury causes damage to the nerves, muscles, and the tissue surrounding the spinal cord. Depending on the severity, spinal... Spinal cord injuries affect nearly five to ten individuals per million every year. Spinal cord injury causes damage to the nerves, muscles, and the tissue surrounding the spinal cord. Depending on the severity, spinal injuries are linked to degeneration of axons and myelin, resulting in neuronal impairment and skeletal muscle weakness and atrophy. The protection of neurons and promotion of myelin regeneration during spinal cord injury is important for recovery of function following spinal cord injury. Current treatments have little to no effect on spinal cord injury and neurogenic muscle loss. Clemastine, an Food and Drug Administration-approved antihistamine drug, reduces inflammation, protects cells, promotes remyelination, and preserves myelin integrity. Recent clinical evidence suggests that clemastine can decrease the loss of axons after spinal cord injury, stimulating the differentiation of oligodendrocyte progenitor cells into mature oligodendrocytes that are capable of myelination. While clemastine can aid not only in the remyelination and preservation of myelin sheath integrity, it also protects neurons. However, its role in neurogenic muscle loss remains unclear. This review discusses the pathophysiology of spinal cord injury, and the role of clemastine in the protection of neurons, myelin, and axons as well as attenuation of skeletal muscle loss following spinal cord injury. 展开更多
关键词 axonal damage CLEMASTINE MYELINATION neuronal death OLIGODENDROCYTES skeletal muscle spinal cord injury
下载PDF
Effect of hyperthermia on calbindin-D 28k immunoreactivity in the hippocampal formation following transient global cerebral ischemia in gerbils 被引量:2
18
作者 Jae-Chul Lee Jeong-Hwi Cho +10 位作者 Tae-Kyeong Lee In Hye Kim Moo-Ho Won Geum-Sil Cho Bich-Na Shin In Koo Hwang Joon Ha Park Ji Hyeon Ahn Il Jun Kang Young Joo Lee Yang Hee Kim 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第9期1458-1464,共7页
Calbindin D-28K (CB), a Ca2+-binding protein, maintains Ca2+ homeostasis and protects neurons against various insults. Hyperthermia can exacerbate brain damage produced by ischemic insults. However, little is repo... Calbindin D-28K (CB), a Ca2+-binding protein, maintains Ca2+ homeostasis and protects neurons against various insults. Hyperthermia can exacerbate brain damage produced by ischemic insults. However, little is reported about the role of CB in the brain under hyperthermic condition during ischemic insults. We inves- tigated the effects of transient global cerebral ischemia on CB immunoreactivity as well as neuronal damage in the hippocampal formation under hyperthermic condition using immunohistochemistry for neuronal nuclei (NeuN) and CB, and Fluoro-Jade B histofluorescence staining in gerbils. Hyperthermia (39.5 + 0.2~C) was induced for 30 minutes before and during transient ischemia. Hyperthermic ischemia resulted in neu- ronal damage/death in the pyramidal layer of CA1-3 area and in the polymorphic layer of the dentate gyrus at 1, 2, 5 days after ischemia. In addition, hyperthermic ischemia significantly decreaced CB immunoreac- tivity in damaged or dying neurons at 1, 2, 5 days after ischemia. In brief, hyperthermic condition produced more extensive and severer neuronal damage/death, and reduced CB immunoreactivity in the hippocampus following transient global cerebral ischemia. Present findings indicate that the degree of reduced CB immu- noreactivity might be related with various neuronal damage/death overtime and corresponding areas after ischemic insults. 展开更多
关键词 nerve regeneration hyperthermic condition ischemia/reperfusion injury subregions of hippocampus delayed neuronal death calbindin D-28k neural regeneration
下载PDF
Implications of enolase in the RANKL-mediated osteoclast activity following spinal cord injury 被引量:3
19
作者 RAMSHA SHAMS NAREN LBANIK AZIZUL HAQUE 《BIOCELL》 SCIE 2021年第6期1453-1457,共5页
Spinal Cord Injury(SCI)is a debilitating condition characterized by damage to the spinal cord,resulting in loss of function,mobility,and sensation.Although increasingly prevalent in the US,no FDA-approved therapy exis... Spinal Cord Injury(SCI)is a debilitating condition characterized by damage to the spinal cord,resulting in loss of function,mobility,and sensation.Although increasingly prevalent in the US,no FDA-approved therapy exists due to the unfortunate complexity of the condition,and the difficulties of SCI may be furthered by the development of SCI-related complications,such as osteoporosis.SCI demonstrates two crucial stages for consideration:the primary stage and the secondary stage.While the primary stage is suggested to be immediate and irreversible,the secondary stage is proposed as a promising window of opportunity for therapeutic intervention.Enolase,a metabolic enzyme upregulated after SCI,performs non-glycolytic functions,promoting inflammatory events via extracellular degradative actions and increased production of inflammatory cytokines and chemokines.Neuron-specific enolase(NSE)serves as a biomarker of functional damage to neurons following SCI,and the inhibition of NSE has been demonstrated to reduce signs of secondary injury of SCI and to ameliorate dysfunction.This Viewpoint article involves enolase activation in the regulation of RANK-RANKL pathway and summarizes succinctly the mechanisms influencing osteoclast-mediated resorption of bone in SCI.Our laboratory proposes that inhibition of enolase activation may reduce SCI-induced inflammatory response and decrease osteoclast activity,limiting the chances of skeletal tissue loss in SCI. 展开更多
关键词 ENOLASE RANK RANKL OSTEOPOROSIS Neuronal death Spinal cord injury
下载PDF
Heterogeneity in the regenerative abilities of central nervous system axons within species: why do some neurons regenerate better than others? 被引量:1
20
作者 William Rodemer Jianli Hu +1 位作者 Michael E.Selzer Michael I.Shifman 《Neural Regeneration Research》 SCIE CAS CSCD 2020年第6期996-1005,共10页
Some neurons,especially in mammalian peripheral nervous system or in lower vertebrate or in vertebrate central nervous system(CNS)regenerate after axotomy,while most mammalian CNS neurons fail to regenerate.There is a... Some neurons,especially in mammalian peripheral nervous system or in lower vertebrate or in vertebrate central nervous system(CNS)regenerate after axotomy,while most mammalian CNS neurons fail to regenerate.There is an emerging consensus that neurons have different intrinsic regenerative capabilities,which theoretically could be manipulated therapeutically to improve regeneration.Population-based comparisons between"good regenerating"and"bad regenerating"neurons in the CNS and peripheral nervous system of most vertebrates yield results that are inconclusive or difficult to interpret.At least in part,this reflects the great diversity of cells in the mammalian CNS.Using mammalian nervous system imposes several methodical limitations.First,the small sizes and large numbers of neurons in the CNS make it very difficult to distinguish regenerating neurons from non-regenerating ones.Second,the lack of identifiable neurons makes it impossible to correlate biochemical changes in a neuron with axonal damage of the same neuron,and therefore,to dissect the molecular mechanisms of regeneration on the level of single neurons.This review will survey the reported responses to axon injury and the determinants of axon regeneration,emphasizing non-mammalian model organisms,which are often under-utilized,but in which the data are especially easy to interpret. 展开更多
关键词 AXONAL regeneration identifiable NEURONS intrinsic factors LAMPREY Mauthner CELL Müller CELL neuronal death non-mammalian model organisms spinal cord injury zebrafish
下载PDF
上一页 1 2 43 下一页 到第
使用帮助 返回顶部