Screen printing is regarded as a highly competitive manufacture technology for scalable and fast fabrication of printed microelectronics, owing to its advanced merits of low-cost, facile operability and scalability.Ho...Screen printing is regarded as a highly competitive manufacture technology for scalable and fast fabrication of printed microelectronics, owing to its advanced merits of low-cost, facile operability and scalability.However, its large-scale application in printed microelectronics is still limited by screen printing functional ink. In this review, we summarize the recent advances of ink formation, typical scalable applications, and challenging perspectives of screen printing for emerging printed microelectronics. Firstly, we introduce the major mechanism of screen printing and the formation of different organic-and aqueous-based inks by various solvents and binders. Next, we review the most widely used applications of screen printing technique in micro-batteries, micro-supercapacitors and micro-sensors, demonstrative of wide applicability.Finally, the perspectives and future challenges in the sight of screen printing are briefly discussed.展开更多
Fractal-structured silver particles(FSSPs)are conductive materials with a micron-scale trunk and nanoscale branches,and are characterized with high electrical conductivity and high connectivity.In this study,FSSPs wer...Fractal-structured silver particles(FSSPs)are conductive materials with a micron-scale trunk and nanoscale branches,and are characterized with high electrical conductivity and high connectivity.In this study,FSSPs were added to an aqueous additive solution for synthesizing a conductive ink,which was used to prepare two types of printing electrodes via screen printing.The first type included two flexible printed electrodes(FPEs):an FPE on a polyethylene terephthalate(PET)film and an FPE on paper.The second one was a polydimethylsiloxane(PDMS)-embedded FPE.The PETbased FPE exhibited high electrochemical stability when its sheet resistance was 0.38Ω/sq for a 50%(w/w)content of FSSPs in the prepared conductive ink.Moreover,the embedded FPE demonstrated excellent mechanical properties and high chemical stability.In addition,the embedded structure was endowed with stretchability,which is important for different devices,such as flexible biomedical sensors and flexible electronics.展开更多
Strain sensors for human-motion detection must offer high stretchability, high sensitivity, fast response, and high recovery speed. In this study, we choose silver paste as a sensing material and use a screen printing...Strain sensors for human-motion detection must offer high stretchability, high sensitivity, fast response, and high recovery speed. In this study, we choose silver paste as a sensing material and use a screen printing method to fabricate the strain sensor based upon an electrical-resistance mechanism. After curing elastomeric polyurethane film with a thickness of 150 μm on PET film, the polyester resin mixed with blocked isocyanate curing agent was coated as a masking layer to reduce the film’s stickiness. The effect of the polyester masking layer upon the silver paste screen printing process was examined using a rolling-ball-tack test, TGA analysis of polyester resins, and cured silver-electrode films. The cost-effective strain sensor fabricated by using silver paste and screen printing processes on the stretchable-polyurethane-substrate film showed high sensitivity and fast response in a strain range of up to 100%.展开更多
’97 Wuhan International Screen Special Printing Technology Exhibition was held from May 21—24, 1997 in Wuhan city,the capital of Hubei Province. 120 famous exhibitors from China, USA, Canada, Holland, Japan, Korea, ...’97 Wuhan International Screen Special Printing Technology Exhibition was held from May 21—24, 1997 in Wuhan city,the capital of Hubei Province. 120 famous exhibitors from China, USA, Canada, Holland, Japan, Korea, and Hong Kong, Taiwan districts attended the Exhibition. The booth area was more than 5000 m^2.展开更多
Conductive inks based on graphene materials have received significant attention for the fabrication of a wide range of printed and flexible devices.However,the application of graphene fillers is limited by their restr...Conductive inks based on graphene materials have received significant attention for the fabrication of a wide range of printed and flexible devices.However,the application of graphene fillers is limited by their restricted mass production and the low concentration of their suspensions.In this study,a highly concentrated and conductive ink based on defect-free graphene was developed by a scalable fluid dynamics process.A high shear exfoliation and mixing process enabled the production of graphene at a high concentration of 47.5 mg mL^(−1)for graphene ink.The screen-printed graphene conductor exhibits a high electrical conductivity of 1.49×10^(4)S m^(−1)and maintains high conductivity under mechanical bending,compressing,and fatigue tests.Based on the as-prepared graphene ink,a printed electrochemical sodium ion(Na^(+))sensor that shows high potentiometric sensing performance was fabricated.Further,by integrating a wireless electronic module,a prototype Na^(+)-sensing watch is demonstrated for the real-time monitoring of the sodium ion concentration in human sweat during the indoor exercise of a volunteer.The scalable and efficient procedure for the preparation of graphene ink presented in this work is very promising for the low-cost,reproducible,and large-scale printing of flexible and wearable electronic devices.展开更多
In this study, indoor air quality (IAQ) assessments were carried out in a screen printing facility. The air sampling was conducted in press department, including two different types of screen printing machines: sem...In this study, indoor air quality (IAQ) assessments were carried out in a screen printing facility. The air sampling was conducted in press department, including two different types of screen printing machines: semi-automatic and automatic. Air samples were collected and analyzed in situ for 4 times, once per 2 hours, during working time of 8 hours. Analysis of the experimental data showed that ambient ozone concentrations slowly increases with the increasing of TVOCs concentration and intensive use of UV lamps during automatic screen printing process. Therefore, the detected concentration levels of ozone and VOCs were compared with the Occupational Safety and Health Administration (OSHA) and Serbian Regulation. Comparison of the two mentioned standard regulations, the ozone concentrations in indoor printing air were from 0.83 to 8.1 and 2.4 to 16.2 times higher in the relation to the prescribed PEL and maximum allowed concentration (MAC) values, respectively, while the concentrations of particular VOCs were much below the PEL prescribed by the OSHA.展开更多
The use of the four new synthesized polyurethane acrylate binders in the pigment print paste for screen printing cotton and polyester fabrics and pigment fixation through the polymerization process of the binder by us...The use of the four new synthesized polyurethane acrylate binders in the pigment print paste for screen printing cotton and polyester fabrics and pigment fixation through the polymerization process of the binder by using the thermofixation technique as well as the UV curing technique was studied. The effect of changing time and temperature of thermofixation, and the time of UV curing on the color strength, and prints fastness properties were also studied. The results showed that, the newly synthesized polyurethane acrylate binders could be successfully used for pigment fixation on cotton and polyester using the two fixation techniques and in general their prints possessed better color strength values as compared to those obtained upon using the selected commercial binders.展开更多
Compared with bar code and quick response( QR) code in the storage and retailing management of textiles, the ultra-high frequency( UHF) radio frequency identification( RFID) tags have high information capacity as well...Compared with bar code and quick response( QR) code in the storage and retailing management of textiles, the ultra-high frequency( UHF) radio frequency identification( RFID) tags have high information capacity as well as reliability in complex environmental conditions. In this study,the UHF RFID tags with perfect integration with textiles are assembled with screen-printed antenna on woven water-mark nylon fabric and Alien UHF integrated circuit( IC), and their reading performance under various washing and bending conditions is evaluated by an RFID reader. The results show that the tags after fifty bending( both arch and sink) cycles of screen-printed antenna still have reading distance more than 5.5 m,and an average reading distance is over 4.0 m after five washing cycles. The experimental results demonstrate that the tag antenna on the water-mark fabric can be manufactured by the screen-printing technology,and a coating process on this fabric facilitates the reading performance and the resistance against complex mechanical impact.展开更多
A sensitive and specific immunosensor for the detection of the hormones cortisol and lactate in human or animal biological fluids, such as sweat and saliva, was devised using the label-free electrochemical chronoamper...A sensitive and specific immunosensor for the detection of the hormones cortisol and lactate in human or animal biological fluids, such as sweat and saliva, was devised using the label-free electrochemical chronoamperometric technique. By using these fluids instead of blood,the biosensor becomes noninvasive and is less stressful to the end user, who may be a small child or a farm animal.Electroreduced graphene oxide(e-RGO) was used as a synergistic platform for signal amplification and template for bioconjugation for the sensing mechanism on a screenprinted electrode. The cortisol and lactate antibodies were bioconjugated to the e-RGO using covalent carbodiimide chemistry. Label-free electrochemical chronoamperometric detection was used to analyze the response to the desired biomolecules over the wide detection range. A detection limit of 0.1 ng mL^(-1) for cortisol and 0.1 mM for lactate was established and a correlation between concentration and current was observed. A portable, handheld potentiostat assembled with Bluetooth communication and battery operation enables the developed system for point-of-care applications. A sandwich-like structure containing the sensing mechanisms as a prototype was designed to secure the biosensor to skin and use capillary action to draw sweat or other fluids toward the sensing mechanism. Overall, the immunosensor shows remarkable specificity, sensitivity as well as the noninvasive and point-of-care capabilities and allows the biosensor to be used as a versatile sensing platform in both developed and developing countries.展开更多
The maximum level of organophosphate pesticide residues in rice is 0.1 mg/kg and 0.5 mg/kg in vegetables. The control of pesticide residues in agricultural products required a method of analysis quickly and accurately...The maximum level of organophosphate pesticide residues in rice is 0.1 mg/kg and 0.5 mg/kg in vegetables. The control of pesticide residues in agricultural products required a method of analysis quickly and accurately. The research developed a biosensor for the detection of organophosphate pesticide residues in agricultural products. The research studied immobilized organophosphate hydrolase (OPH) mass and characterization of biosensor. The solution conductivity measurement in the conductivity cell consists of a 1 × 5 mm2 pair of electrodes screen printed carbon electrode (SPCE). The instrument is a converted local conductometer. From the results of study concluded that the optimum performance of the biosensor was obtained from the 105 μg OPH, at pH 8.5 with a response time of 45 seconds. In that condition the sensitivity of biosensor is 28.04 μS/ppm and 0.18 ppm detection limit and the maximum concentration of pesticide which can be measured is 1 ppm. Biosensors have been applied to measure pesticide residues in some vegetable samples.展开更多
Color image printing technique on ink jetting printer is introduced.Color shading method such as dithering,Amplitude Modulation(AM)screening and Frequency Modulation(FM)screening is presented.Some solutions to the pro...Color image printing technique on ink jetting printer is introduced.Color shading method such as dithering,Amplitude Modulation(AM)screening and Frequency Modulation(FM)screening is presented.Some solutions to the problems with FM screening are given. An application program under Windows is developed.展开更多
The electrochemical oxidation behavior and voltammetric assay of gemifloxacin were investigated using differential-pulse and cyclic voltammetry on a screen-printed carbon electrode.The effects of pH,scan rates,and con...The electrochemical oxidation behavior and voltammetric assay of gemifloxacin were investigated using differential-pulse and cyclic voltammetry on a screen-printed carbon electrode.The effects of pH,scan rates,and concentration of the drug on the anodic peak current were studied.Voltammograms of gemifloxacin in Tris-HCl buffer(pH 7.0) exhibited a well-defined single oxidation peak.A differential-pulse voltammetric procedure for the quantitation of gemifloxacin has been developed and suitably validated with respect to linearity,limits of detection and quantification,accuracy,precision,specificity,and robustness.The calibration was linear from 0.5 to 10.0 μM,and the limits of detection and quantification were 0.15 and 5.0 μM.Recoveries ranging from 96.26% to 103.64% were obtained.The method was successfully applied to the determination of gemifloxacin in pharmaceutical tablets without any pre-treatment.Excipients present in the tablets did not interfere in the assay.展开更多
Perovskite solar cells(PSCs)have reached a recorded power conversion efficiency(PCE)of 25.7%just over a decade.1 Due to the solution processability,various deposition methods have been developed to prepare PSCs,includ...Perovskite solar cells(PSCs)have reached a recorded power conversion efficiency(PCE)of 25.7%just over a decade.1 Due to the solution processability,various deposition methods have been developed to prepare PSCs,including spin coating,blade coating,spray coating,slot-die printing,and ink-jet printing.2,3 Among them,screen printing has received great attention due to the unique advantages of customized pattern design,high throughput,and low-cost production.Thus this technology holds a great promise for industrialization of perovskite solar cells.4 Till now,screen printing has been successfully applied to prepare buffer layers and electrodes of PSCs,but attempts in perovskite-layer fabrication have failed.The key problem is that the commonly used organic solvents with a low viscosity are not fit for screen printing,which limits the application of this deposition technology for perovskite-film manufacturing.展开更多
The screen-printed nanoporous TiO2 thin film was employed to fabricate dye-sensitized solid-state solar cells using CuI as hole-transport materials. The solar cell based on nanoporous TiO2 thin film with large pores f...The screen-printed nanoporous TiO2 thin film was employed to fabricate dye-sensitized solid-state solar cells using CuI as hole-transport materials. The solar cell based on nanoporous TiO2 thin film with large pores formed by the addition of polystyrene balls with diameter of 200 nm to the TiO2 paste exhibits photovoltaic performance enhancement, which is attributed to the good contact of CuI with surface of dye-sensitized thin film due to easy penetration of CuI in the film with large pores.展开更多
We report the fabrication of disposable and flexible Screen-Printed Electrodes (SPEs). This new type of screen-printed electrochemical platform consists of Ag nanoparticles (AgNPs) and graphite composite. For this pur...We report the fabrication of disposable and flexible Screen-Printed Electrodes (SPEs). This new type of screen-printed electrochemical platform consists of Ag nanoparticles (AgNPs) and graphite composite. For this purpose, silver nanoparticles were first synthesized by a chemical reduction method. The morphology and structure of the AgNPs were analyzed using a Scanning Electron Microscope (SEM) and UV-Visible spectroscopy. Graphite was chosen as the working electrode material for the fabrication of a thick-film. The fabrication of a screen-printed hydrogen peroxide biosensor consisting of three electrodes on a polyethylene terephthalate (PET) substrate was performed with a spraying approach (working, counter and reference: enzyme electrode, graphite, pseudo reference: Ag/AgCl). This biosensor was fabricated by immobilizing the peroxidase enzyme (HRP) in a Titania sol-gel membrane which was obtained through a vapor deposition method. The biosensor had electrocatalytic activity in the reduction of H2O2 with linear dependence on H2O2 concentration in the range of 10-5 to 10-3 M;the detection limit was 4.5 × 10-6 M.展开更多
基金financially supported by the National Key R@D Program of China (2016YFB0100100,2016YFA0200200)the National Natural Science Foundation of China (22125903,51872283,22075279,21805273,22005297,22005298)+7 种基金the Liao Ning Revitalization Talents Program (XLYC1807153)the CentralGovernment of Liaoning Province Guides The Funds for Local Science and Technology Development (2021JH6/10500112)the Dalian Innovation Support Plan for High Level Talents(2019RT09)the Dalian National Laboratory For Clean Energy(DNL)the CASDNL Cooperation Fund,CAS (DNL201912,DNL201915,DNL202016,DNL202019)DICP (DICP ZZBS201708,DICP ZZBS201802,DICP I2020032)the China Postdoctoral Science Foundation (2019M661141,2020M680995)。
文摘Screen printing is regarded as a highly competitive manufacture technology for scalable and fast fabrication of printed microelectronics, owing to its advanced merits of low-cost, facile operability and scalability.However, its large-scale application in printed microelectronics is still limited by screen printing functional ink. In this review, we summarize the recent advances of ink formation, typical scalable applications, and challenging perspectives of screen printing for emerging printed microelectronics. Firstly, we introduce the major mechanism of screen printing and the formation of different organic-and aqueous-based inks by various solvents and binders. Next, we review the most widely used applications of screen printing technique in micro-batteries, micro-supercapacitors and micro-sensors, demonstrative of wide applicability.Finally, the perspectives and future challenges in the sight of screen printing are briefly discussed.
基金This work was supported by the International Joint Research Center for Biomass Chemistry and Materials,Shaanxi International Science and Technology Cooperation Base(2018GHJD-19)the Shaanxi Key Industry Innovation Chain Projects(2020ZDLGY11-03)+2 种基金the Science and Technology Plan of Weiyang District of Xi'an(201910)the Scientific Research Plan Projects of Shaanxi Education Department(19JK0131)The project was also supported by the Foundation of Key Laboratory of Pulp and Paper Science and Technology of the Ministry of Education/Shandong Province of China(KF201814).
文摘Fractal-structured silver particles(FSSPs)are conductive materials with a micron-scale trunk and nanoscale branches,and are characterized with high electrical conductivity and high connectivity.In this study,FSSPs were added to an aqueous additive solution for synthesizing a conductive ink,which was used to prepare two types of printing electrodes via screen printing.The first type included two flexible printed electrodes(FPEs):an FPE on a polyethylene terephthalate(PET)film and an FPE on paper.The second one was a polydimethylsiloxane(PDMS)-embedded FPE.The PETbased FPE exhibited high electrochemical stability when its sheet resistance was 0.38Ω/sq for a 50%(w/w)content of FSSPs in the prepared conductive ink.Moreover,the embedded FPE demonstrated excellent mechanical properties and high chemical stability.In addition,the embedded structure was endowed with stretchability,which is important for different devices,such as flexible biomedical sensors and flexible electronics.
文摘Strain sensors for human-motion detection must offer high stretchability, high sensitivity, fast response, and high recovery speed. In this study, we choose silver paste as a sensing material and use a screen printing method to fabricate the strain sensor based upon an electrical-resistance mechanism. After curing elastomeric polyurethane film with a thickness of 150 μm on PET film, the polyester resin mixed with blocked isocyanate curing agent was coated as a masking layer to reduce the film’s stickiness. The effect of the polyester masking layer upon the silver paste screen printing process was examined using a rolling-ball-tack test, TGA analysis of polyester resins, and cured silver-electrode films. The cost-effective strain sensor fabricated by using silver paste and screen printing processes on the stretchable-polyurethane-substrate film showed high sensitivity and fast response in a strain range of up to 100%.
文摘’97 Wuhan International Screen Special Printing Technology Exhibition was held from May 21—24, 1997 in Wuhan city,the capital of Hubei Province. 120 famous exhibitors from China, USA, Canada, Holland, Japan, Korea, and Hong Kong, Taiwan districts attended the Exhibition. The booth area was more than 5000 m^2.
基金the National Research Foundation of Korea(NRF)Grant funded by the Ministry of Science and ICT(No.2021R1A2C1009926)“Basic project(referring to projects performed with the budget directly contributed by the Government to achieve the purposes of establishment of Government-funded research Institutes)”+3 种基金supported by the KOREA RESEARCH INSTITUTE of CHEMICAL TECHNOLOGY(KRICT)(SS2042-10)Basic research project(Project:21-3212-1)of the Korea institute of GeoscienceMineral resources funded by the Ministry of Science and ICT of Koreaby Nanomedical Devices Development Project of NNFC in 2021.
文摘Conductive inks based on graphene materials have received significant attention for the fabrication of a wide range of printed and flexible devices.However,the application of graphene fillers is limited by their restricted mass production and the low concentration of their suspensions.In this study,a highly concentrated and conductive ink based on defect-free graphene was developed by a scalable fluid dynamics process.A high shear exfoliation and mixing process enabled the production of graphene at a high concentration of 47.5 mg mL^(−1)for graphene ink.The screen-printed graphene conductor exhibits a high electrical conductivity of 1.49×10^(4)S m^(−1)and maintains high conductivity under mechanical bending,compressing,and fatigue tests.Based on the as-prepared graphene ink,a printed electrochemical sodium ion(Na^(+))sensor that shows high potentiometric sensing performance was fabricated.Further,by integrating a wireless electronic module,a prototype Na^(+)-sensing watch is demonstrated for the real-time monitoring of the sodium ion concentration in human sweat during the indoor exercise of a volunteer.The scalable and efficient procedure for the preparation of graphene ink presented in this work is very promising for the low-cost,reproducible,and large-scale printing of flexible and wearable electronic devices.
文摘In this study, indoor air quality (IAQ) assessments were carried out in a screen printing facility. The air sampling was conducted in press department, including two different types of screen printing machines: semi-automatic and automatic. Air samples were collected and analyzed in situ for 4 times, once per 2 hours, during working time of 8 hours. Analysis of the experimental data showed that ambient ozone concentrations slowly increases with the increasing of TVOCs concentration and intensive use of UV lamps during automatic screen printing process. Therefore, the detected concentration levels of ozone and VOCs were compared with the Occupational Safety and Health Administration (OSHA) and Serbian Regulation. Comparison of the two mentioned standard regulations, the ozone concentrations in indoor printing air were from 0.83 to 8.1 and 2.4 to 16.2 times higher in the relation to the prescribed PEL and maximum allowed concentration (MAC) values, respectively, while the concentrations of particular VOCs were much below the PEL prescribed by the OSHA.
文摘The use of the four new synthesized polyurethane acrylate binders in the pigment print paste for screen printing cotton and polyester fabrics and pigment fixation through the polymerization process of the binder by using the thermofixation technique as well as the UV curing technique was studied. The effect of changing time and temperature of thermofixation, and the time of UV curing on the color strength, and prints fastness properties were also studied. The results showed that, the newly synthesized polyurethane acrylate binders could be successfully used for pigment fixation on cotton and polyester using the two fixation techniques and in general their prints possessed better color strength values as compared to those obtained upon using the selected commercial binders.
基金National Natural Science Foundation of China(Nos.51405079)China Postdoctoral Science Foundation of China(No.2015M570307)+1 种基金the Fundamental Research Funds for the Central Universities,Chinathe Jiangsu Planned Projects for Postdoctoral Research Funds,China
文摘Compared with bar code and quick response( QR) code in the storage and retailing management of textiles, the ultra-high frequency( UHF) radio frequency identification( RFID) tags have high information capacity as well as reliability in complex environmental conditions. In this study,the UHF RFID tags with perfect integration with textiles are assembled with screen-printed antenna on woven water-mark nylon fabric and Alien UHF integrated circuit( IC), and their reading performance under various washing and bending conditions is evaluated by an RFID reader. The results show that the tags after fifty bending( both arch and sink) cycles of screen-printed antenna still have reading distance more than 5.5 m,and an average reading distance is over 4.0 m after five washing cycles. The experimental results demonstrate that the tag antenna on the water-mark fabric can be manufactured by the screen-printing technology,and a coating process on this fabric facilitates the reading performance and the resistance against complex mechanical impact.
基金the Natural Sciences and Engineering Research Council of Canada (400705) for funding this study
文摘A sensitive and specific immunosensor for the detection of the hormones cortisol and lactate in human or animal biological fluids, such as sweat and saliva, was devised using the label-free electrochemical chronoamperometric technique. By using these fluids instead of blood,the biosensor becomes noninvasive and is less stressful to the end user, who may be a small child or a farm animal.Electroreduced graphene oxide(e-RGO) was used as a synergistic platform for signal amplification and template for bioconjugation for the sensing mechanism on a screenprinted electrode. The cortisol and lactate antibodies were bioconjugated to the e-RGO using covalent carbodiimide chemistry. Label-free electrochemical chronoamperometric detection was used to analyze the response to the desired biomolecules over the wide detection range. A detection limit of 0.1 ng mL^(-1) for cortisol and 0.1 mM for lactate was established and a correlation between concentration and current was observed. A portable, handheld potentiostat assembled with Bluetooth communication and battery operation enables the developed system for point-of-care applications. A sandwich-like structure containing the sensing mechanisms as a prototype was designed to secure the biosensor to skin and use capillary action to draw sweat or other fluids toward the sensing mechanism. Overall, the immunosensor shows remarkable specificity, sensitivity as well as the noninvasive and point-of-care capabilities and allows the biosensor to be used as a versatile sensing platform in both developed and developing countries.
文摘The maximum level of organophosphate pesticide residues in rice is 0.1 mg/kg and 0.5 mg/kg in vegetables. The control of pesticide residues in agricultural products required a method of analysis quickly and accurately. The research developed a biosensor for the detection of organophosphate pesticide residues in agricultural products. The research studied immobilized organophosphate hydrolase (OPH) mass and characterization of biosensor. The solution conductivity measurement in the conductivity cell consists of a 1 × 5 mm2 pair of electrodes screen printed carbon electrode (SPCE). The instrument is a converted local conductometer. From the results of study concluded that the optimum performance of the biosensor was obtained from the 105 μg OPH, at pH 8.5 with a response time of 45 seconds. In that condition the sensitivity of biosensor is 28.04 μS/ppm and 0.18 ppm detection limit and the maximum concentration of pesticide which can be measured is 1 ppm. Biosensors have been applied to measure pesticide residues in some vegetable samples.
文摘Color image printing technique on ink jetting printer is introduced.Color shading method such as dithering,Amplitude Modulation(AM)screening and Frequency Modulation(FM)screening is presented.Some solutions to the problems with FM screening are given. An application program under Windows is developed.
文摘The electrochemical oxidation behavior and voltammetric assay of gemifloxacin were investigated using differential-pulse and cyclic voltammetry on a screen-printed carbon electrode.The effects of pH,scan rates,and concentration of the drug on the anodic peak current were studied.Voltammograms of gemifloxacin in Tris-HCl buffer(pH 7.0) exhibited a well-defined single oxidation peak.A differential-pulse voltammetric procedure for the quantitation of gemifloxacin has been developed and suitably validated with respect to linearity,limits of detection and quantification,accuracy,precision,specificity,and robustness.The calibration was linear from 0.5 to 10.0 μM,and the limits of detection and quantification were 0.15 and 5.0 μM.Recoveries ranging from 96.26% to 103.64% were obtained.The method was successfully applied to the determination of gemifloxacin in pharmaceutical tablets without any pre-treatment.Excipients present in the tablets did not interfere in the assay.
文摘Perovskite solar cells(PSCs)have reached a recorded power conversion efficiency(PCE)of 25.7%just over a decade.1 Due to the solution processability,various deposition methods have been developed to prepare PSCs,including spin coating,blade coating,spray coating,slot-die printing,and ink-jet printing.2,3 Among them,screen printing has received great attention due to the unique advantages of customized pattern design,high throughput,and low-cost production.Thus this technology holds a great promise for industrialization of perovskite solar cells.4 Till now,screen printing has been successfully applied to prepare buffer layers and electrodes of PSCs,but attempts in perovskite-layer fabrication have failed.The key problem is that the commonly used organic solvents with a low viscosity are not fit for screen printing,which limits the application of this deposition technology for perovskite-film manufacturing.
基金the financial support of this work by the Major State Basic Research Development Program(No.2006CB202605)High-Tech Research and Development of China Program(No.2007AA05Z439)+1 种基金the National Nature Science Foundation of China(No.50221201)Innovative Foundation of the Center for Molecular Science,Chinese Academy of Sciences(No.CMS-CX200718).
文摘The screen-printed nanoporous TiO2 thin film was employed to fabricate dye-sensitized solid-state solar cells using CuI as hole-transport materials. The solar cell based on nanoporous TiO2 thin film with large pores formed by the addition of polystyrene balls with diameter of 200 nm to the TiO2 paste exhibits photovoltaic performance enhancement, which is attributed to the good contact of CuI with surface of dye-sensitized thin film due to easy penetration of CuI in the film with large pores.
文摘We report the fabrication of disposable and flexible Screen-Printed Electrodes (SPEs). This new type of screen-printed electrochemical platform consists of Ag nanoparticles (AgNPs) and graphite composite. For this purpose, silver nanoparticles were first synthesized by a chemical reduction method. The morphology and structure of the AgNPs were analyzed using a Scanning Electron Microscope (SEM) and UV-Visible spectroscopy. Graphite was chosen as the working electrode material for the fabrication of a thick-film. The fabrication of a screen-printed hydrogen peroxide biosensor consisting of three electrodes on a polyethylene terephthalate (PET) substrate was performed with a spraying approach (working, counter and reference: enzyme electrode, graphite, pseudo reference: Ag/AgCl). This biosensor was fabricated by immobilizing the peroxidase enzyme (HRP) in a Titania sol-gel membrane which was obtained through a vapor deposition method. The biosensor had electrocatalytic activity in the reduction of H2O2 with linear dependence on H2O2 concentration in the range of 10-5 to 10-3 M;the detection limit was 4.5 × 10-6 M.