A numerical study of heat transfer problem by natural convection of a fluid inside a square cavity with two inner bodies is presented. This subject is of great interest in the engineering area, mainly in applications ...A numerical study of heat transfer problem by natural convection of a fluid inside a square cavity with two inner bodies is presented. This subject is of great interest in the engineering area, mainly in applications involving development of heat exchangers and cooling or heating systems of bodies by natural convection mechanism. Two cases have been studied. The inner bodies are square in case 1 and circular in case 2. In both cases, the bodies are solid and thermally conductive, the cavity lower and upper horizontal surfaces are isothermal with high temperature Th and low temperature Tc, respectively. Both vertical surfaces are adiabatic. A FORTRAN code using Finite Element Method (FEM) is developed to simulate the problem and solve the governing equations. The distributions of stream function, ψ, dimensionless temperature, θ, and vorticity, ω, are determined. Heat transfer is evaluated by analyzing the behavior of the average Nusselt number. The Grashof number and thermal diffusivity ratio are considered in range from 2 × 104 to 105 and from 0.1 to 100, respectively. The fluid is air with Prandtl number fixed in 0.733.展开更多
文摘A numerical study of heat transfer problem by natural convection of a fluid inside a square cavity with two inner bodies is presented. This subject is of great interest in the engineering area, mainly in applications involving development of heat exchangers and cooling or heating systems of bodies by natural convection mechanism. Two cases have been studied. The inner bodies are square in case 1 and circular in case 2. In both cases, the bodies are solid and thermally conductive, the cavity lower and upper horizontal surfaces are isothermal with high temperature Th and low temperature Tc, respectively. Both vertical surfaces are adiabatic. A FORTRAN code using Finite Element Method (FEM) is developed to simulate the problem and solve the governing equations. The distributions of stream function, ψ, dimensionless temperature, θ, and vorticity, ω, are determined. Heat transfer is evaluated by analyzing the behavior of the average Nusselt number. The Grashof number and thermal diffusivity ratio are considered in range from 2 × 104 to 105 and from 0.1 to 100, respectively. The fluid is air with Prandtl number fixed in 0.733.