Above-and belowground biomass allocation not only influences growth of individual plants,but also influences vegetation structures and functions,and consequently impacts soil carbon input as well as terrestrial ecosys...Above-and belowground biomass allocation not only influences growth of individual plants,but also influences vegetation structures and functions,and consequently impacts soil carbon input as well as terrestrial ecosystem carbon cycling.However,due to sampling difficulties,a considerable amount of uncertainty remains about the root:shoot ratio(R/S),a key parameter for models of terrestrial ecosystem carbon cycling.We investigated biomass allocation patterns across a broad spatial scale.We collected data on individual plant biomass and systematically sampled along a transect across the temperate grasslands in Inner Mongolia as well as in the alpine grasslands on the Tibetan Plateau.Our results indicated that the median of R/S for herbaceous species was 0.78 in China's grasslands as a whole.R/S was significantly higher in temperate grasslands than in alpine grasslands(0.84 vs.0.65).The slope of the allometric relationship between above-and belowground biomass was steeper for temperate grasslands than for alpine.Our results did not support the hypothesis that aboveground biomass scales isometrically with belowground biomass.The R/S in China's grasslands was not significantly correlated with mean annual temperature(MAT) or mean annual precipitation(MAP).Moreover,comparisons of our results with previous findings indicated a large difference between R/S data from individual plants and communities.This might be mainly caused by the underestimation of R/S at the individual level as a result of an inevitable loss of fine roots and the overestimation of R/S in community-level surveys due to grazing and difficulties in identifying dead roots.Our findings suggest that root biomass in grasslands tended to have been overestimated in previous reports of R/S.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 30870381)the Key Project of Scientific and Technical Supporting Programs Funded by the Ministry of Science & Technology of China (Grant No. 2007BAC06B01)
文摘Above-and belowground biomass allocation not only influences growth of individual plants,but also influences vegetation structures and functions,and consequently impacts soil carbon input as well as terrestrial ecosystem carbon cycling.However,due to sampling difficulties,a considerable amount of uncertainty remains about the root:shoot ratio(R/S),a key parameter for models of terrestrial ecosystem carbon cycling.We investigated biomass allocation patterns across a broad spatial scale.We collected data on individual plant biomass and systematically sampled along a transect across the temperate grasslands in Inner Mongolia as well as in the alpine grasslands on the Tibetan Plateau.Our results indicated that the median of R/S for herbaceous species was 0.78 in China's grasslands as a whole.R/S was significantly higher in temperate grasslands than in alpine grasslands(0.84 vs.0.65).The slope of the allometric relationship between above-and belowground biomass was steeper for temperate grasslands than for alpine.Our results did not support the hypothesis that aboveground biomass scales isometrically with belowground biomass.The R/S in China's grasslands was not significantly correlated with mean annual temperature(MAT) or mean annual precipitation(MAP).Moreover,comparisons of our results with previous findings indicated a large difference between R/S data from individual plants and communities.This might be mainly caused by the underestimation of R/S at the individual level as a result of an inevitable loss of fine roots and the overestimation of R/S in community-level surveys due to grazing and difficulties in identifying dead roots.Our findings suggest that root biomass in grasslands tended to have been overestimated in previous reports of R/S.