期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Confined Ni-In intermetallic alloy nanocatalyst with excellent coking resistance for methane dry reforming 被引量:9
1
作者 Wenming Liu Le Li +6 位作者 Sixue Lin Yiwei Luo Zhenghong Bao Yiru Mao Kongzhai Li Daishe Wu Honggen Peng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第2期34-47,共14页
Carbon dioxide and methane are two main greenhouse gases which are contributed to serious global warming.Fortunately,dry reforming of methane(DRM),a very important reaction developed decades ago,can convert these two ... Carbon dioxide and methane are two main greenhouse gases which are contributed to serious global warming.Fortunately,dry reforming of methane(DRM),a very important reaction developed decades ago,can convert these two major greenhouse gases into value-added syngas or hydrogen.The main problem retarding its industrialization is the seriously coking formation upon the nickel-based catalysts.Herein,a series of confined indium-nickel(In-Ni)intermetallic alloy nanocatalysts(In_(x)Ni@SiO_(2))have been prepared and displayed superior coking resistance for DRM reaction.The sample containing 0.5 wt.%of In loading(In_(0.5)Ni@SiO_(2))shows the best balance of carbon deposition resistance and DRM reactivity even after 430 h long term stability test.The boosted carbon resistance can be ascribed to the confinement of core–shell structure and to the transfer of electrons from Indium to Nickel in In-Ni intermetallic alloys due to the smaller electronegativity of In.Both the silica shell and the increase of electron cloud density on metallic Ni can weaken the ability of Ni to activate C–H bond and decrease the deep cracking process of methane.The reaction over the confined InNi intermetallic alloy nanocatalyst was conformed to the Langmuir-Hinshelwood(L-H)mechanism revealed by in situ diffuse reflectance infrared Fourier transform spectroscopy(in-situ DRIFTS).This work provides a guidance to design high performance coking resistance catalysts for methane dry reforming to efficiently utilize these two main greenhouse gases. 展开更多
关键词 Methane dry reforming InNi intermetallic alloy Confinement Coking resistance Utilization of greenhouse gases
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部