The paper reports the deposition(by magnetron sputtering) and properties of polycrystalline boron nitride (BN) layers on commercial inoculating alloy wires. As is characterized by means of Fourier transform infra...The paper reports the deposition(by magnetron sputtering) and properties of polycrystalline boron nitride (BN) layers on commercial inoculating alloy wires. As is characterized by means of Fourier transform infrared(FTIR) spectroscopy, electron energy dispersive X-ray(EDX) spectroscopy and scanning electron microscopy(SEM), the thin BN layers consist of hexagonal and orthorhombic BN phases and are smooth without cracks. Organism transfer- ring-circles experiments reveal that the adhesion between the BN layer and alloy wire is very good after tens of cycles. It is demonstrated that the BN layers covered wires are biomaterial lubricious and self-cleaning. As a result, BN layer would effectively enhance the function and efficiency of inoculating alloy wires, which could be widely ap- plied to bio-experimentation and biomedicine apparatuses.展开更多
基金Supported by the National Natural Science Foundation of China(Nos.51072066, 50772041), the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20100061110083) and the New Century Excellent Talents in Univer- sities of China(No.NCET-06-0303).
文摘The paper reports the deposition(by magnetron sputtering) and properties of polycrystalline boron nitride (BN) layers on commercial inoculating alloy wires. As is characterized by means of Fourier transform infrared(FTIR) spectroscopy, electron energy dispersive X-ray(EDX) spectroscopy and scanning electron microscopy(SEM), the thin BN layers consist of hexagonal and orthorhombic BN phases and are smooth without cracks. Organism transfer- ring-circles experiments reveal that the adhesion between the BN layer and alloy wire is very good after tens of cycles. It is demonstrated that the BN layers covered wires are biomaterial lubricious and self-cleaning. As a result, BN layer would effectively enhance the function and efficiency of inoculating alloy wires, which could be widely ap- plied to bio-experimentation and biomedicine apparatuses.