The electroluminescunce (EL) transient characteristics of erbium-doped zinc sulfide thin film (TF) devices excited by short rectangular pulses are studied, the luminescence delay after de-exciting and the relaxation l...The electroluminescunce (EL) transient characteristics of erbium-doped zinc sulfide thin film (TF) devices excited by short rectangular pulses are studied, the luminescence delay after de-exciting and the relaxation luminance peaks during decay are observed. A model description for energy transfer has been proposed. The experimental results can be theoretically explained with the computer curve fittings.展开更多
Intrinsically stretchable electroluminescent(EL)devices have emerged as pivotal components with transformative potential in various domains,including wearable technology,medical devices,human-machine interfaces,and co...Intrinsically stretchable electroluminescent(EL)devices have emerged as pivotal components with transformative potential in various domains,including wearable technology,medical devices,human-machine interfaces,and communications.This mini-review focuses on the recent progress in the development of intrinsically stretchable EL materials,highlighting milestones and breakthroughs in the field.The article discusses the basic principles,advantages,and disadvantages associated with various EL mechanisms and materials.Specific material design strategies,particularly focusing on light-emitting layers,are thoroughly examined,detailing their implementation in EL devices and the resultant EL performance.We also provide perspectives on the active challenges and future research needs for each type of EL material and devices for achieving stretchable designs,together with some insights into the future trajectory of stretchable EL technology.展开更多
Long life green emitting matrix display based on organic light emitting diode is reported. The pixel number is 96×60, equivalent pixel size 0.4×0.4 mm 2, and the pixel gap 0.1 mm. An image with no crossta...Long life green emitting matrix display based on organic light emitting diode is reported. The pixel number is 96×60, equivalent pixel size 0.4×0.4 mm 2, and the pixel gap 0.1 mm. An image with no crosstalk between pixels is obtained. The average luminance of these pixels at duty cycle of 1/64 is 100 cd/m 2, and the power consumption is 0.6 W. The dark room contrast of 1∶100 is achieved without using a polarization filter.展开更多
In order to use organic light emitting devices (OLEDs) in display application , it is very important to obtain red emitting light. There are two methods for obtaining red emitting light: doping high fluorescent dyes i...In order to use organic light emitting devices (OLEDs) in display application , it is very important to obtain red emitting light. There are two methods for obtaining red emitting light: doping high fluorescent dyes in host or using metal complexes. Phosphorescent dyes has been used efficiently recently. In this letter, we demonstrate red organic light emitting devices (OLED) with the electroluminescent layers consisting of aluminum tris(8 hydroxyquinoline) (Alq 3) doped with the dye DCM and DCJTB, which the emission color depends on the concentration of DCM and DCJTB. The typical cell structure is as follows: [ITO/ hole transport layer (60nm, TPD) /emitting layer(60nm, Alq 3 + red dopant) /LiF(0.5~2nm) /Al(150nm)]. For DCM doped devices, the maximum luminance of 148000cd/m 2 (chromaticity coordinates: x =0.51, y =0.47) and 5730cd/m 2 (chromaticity coordinates: x =0.58, y =0.42) are measured for DCM concentration of 0.2% and 2% in Alq 3, respectively; and for DCJTB doped devices, 17400 cd/m 2 (chromaticity coordinates : x =0.51, y =0.46) and 3846cd/m 2 (chromaticity coordinates: x =0. 63, y =0. 37) are obtained for DCJTB concentration of 0. 2 % and 2% in Alq 3, respectively.展开更多
A tri\|coordinated 8\|hydroxyquinolato\|\%p\%\|methylphenolato\|zinc complex was first synthesized, and its photoluminescent spectra(PL) and UV absorption spectra were investigated. Double layer organic lighting diode...A tri\|coordinated 8\|hydroxyquinolato\|\%p\%\|methylphenolato\|zinc complex was first synthesized, and its photoluminescent spectra(PL) and UV absorption spectra were investigated. Double layer organic lighting diodes(OLEDs), ITO/PVK∶ZnqP(80 nm)/Mg∶Ag was fabricated by using this complex as the luminescent layer. Green electroluminescence(EL) was observed, and this complex was found as a good electroluminescence emitting material.展开更多
文摘The electroluminescunce (EL) transient characteristics of erbium-doped zinc sulfide thin film (TF) devices excited by short rectangular pulses are studied, the luminescence delay after de-exciting and the relaxation luminance peaks during decay are observed. A model description for energy transfer has been proposed. The experimental results can be theoretically explained with the computer curve fittings.
基金the US National Science Foundation CAREER(award no.2239618).
文摘Intrinsically stretchable electroluminescent(EL)devices have emerged as pivotal components with transformative potential in various domains,including wearable technology,medical devices,human-machine interfaces,and communications.This mini-review focuses on the recent progress in the development of intrinsically stretchable EL materials,highlighting milestones and breakthroughs in the field.The article discusses the basic principles,advantages,and disadvantages associated with various EL mechanisms and materials.Specific material design strategies,particularly focusing on light-emitting layers,are thoroughly examined,detailing their implementation in EL devices and the resultant EL performance.We also provide perspectives on the active challenges and future research needs for each type of EL material and devices for achieving stretchable designs,together with some insights into the future trajectory of stretchable EL technology.
文摘Long life green emitting matrix display based on organic light emitting diode is reported. The pixel number is 96×60, equivalent pixel size 0.4×0.4 mm 2, and the pixel gap 0.1 mm. An image with no crosstalk between pixels is obtained. The average luminance of these pixels at duty cycle of 1/64 is 100 cd/m 2, and the power consumption is 0.6 W. The dark room contrast of 1∶100 is achieved without using a polarization filter.
文摘In order to use organic light emitting devices (OLEDs) in display application , it is very important to obtain red emitting light. There are two methods for obtaining red emitting light: doping high fluorescent dyes in host or using metal complexes. Phosphorescent dyes has been used efficiently recently. In this letter, we demonstrate red organic light emitting devices (OLED) with the electroluminescent layers consisting of aluminum tris(8 hydroxyquinoline) (Alq 3) doped with the dye DCM and DCJTB, which the emission color depends on the concentration of DCM and DCJTB. The typical cell structure is as follows: [ITO/ hole transport layer (60nm, TPD) /emitting layer(60nm, Alq 3 + red dopant) /LiF(0.5~2nm) /Al(150nm)]. For DCM doped devices, the maximum luminance of 148000cd/m 2 (chromaticity coordinates: x =0.51, y =0.47) and 5730cd/m 2 (chromaticity coordinates: x =0.58, y =0.42) are measured for DCM concentration of 0.2% and 2% in Alq 3, respectively; and for DCJTB doped devices, 17400 cd/m 2 (chromaticity coordinates : x =0.51, y =0.46) and 3846cd/m 2 (chromaticity coordinates: x =0. 63, y =0. 37) are obtained for DCJTB concentration of 0. 2 % and 2% in Alq 3, respectively.
文摘A tri\|coordinated 8\|hydroxyquinolato\|\%p\%\|methylphenolato\|zinc complex was first synthesized, and its photoluminescent spectra(PL) and UV absorption spectra were investigated. Double layer organic lighting diodes(OLEDs), ITO/PVK∶ZnqP(80 nm)/Mg∶Ag was fabricated by using this complex as the luminescent layer. Green electroluminescence(EL) was observed, and this complex was found as a good electroluminescence emitting material.