Oil and gas pipelines are affected by many factors,such as pipe wall thinning and pipeline rupture.Accurate prediction of failure pressure of oil and gas pipelines can provide technical support for pipeline safety man...Oil and gas pipelines are affected by many factors,such as pipe wall thinning and pipeline rupture.Accurate prediction of failure pressure of oil and gas pipelines can provide technical support for pipeline safety management.Aiming at the shortcomings of the BP Neural Network(BPNN)model,such as low learning efficiency,sensitivity to initial weights,and easy falling into a local optimal state,an Improved Sparrow Search Algorithm(ISSA)is adopted to optimize the initial weights and thresholds of BPNN,and an ISSA-BPNN failure pressure prediction model for corroded pipelines is established.Taking 61 sets of pipelines blasting test data as an example,the prediction model was built and predicted by MATLAB software,and compared with the BPNN model,GA-BPNN model,and SSA-BPNN model.The results show that the MAPE of the ISSA-BPNN model is 3.4177%,and the R2 is 0.9880,both of which are superior to its comparison model.Using the ISSA-BPNN model has high prediction accuracy and stability,and can provide support for pipeline inspection and maintenance.展开更多
A set of generalized solutions are proposed for estimating ultimate load capacity of pipeline with arbitrary corrosion shapes subjected to combined internal pressure, axial force and bending moment. Isotropic and anis...A set of generalized solutions are proposed for estimating ultimate load capacity of pipeline with arbitrary corrosion shapes subjected to combined internal pressure, axial force and bending moment. Isotropic and anisotropic material characteristics in longitudinal and circumferential direction of pipeline are also considered in the proposed equations. Simplified numerical method is used to solve the generalized expressions. The comparisons of numerical results based generalized solutions and full-scale experimental results are carried out. The predicted results agree reasonably well with the experiment results. Meanwhile, the effects of corrosion shapes and locations on the ultimate load capacity are studied.展开更多
Corrosion is one of the main reasons to cause the operation accident of submarine oil and gas transmission pipelines. As the major corrosion pattern in submarine pipelines, the effects of corrosion clusters consisting...Corrosion is one of the main reasons to cause the operation accident of submarine oil and gas transmission pipelines. As the major corrosion pattern in submarine pipelines, the effects of corrosion clusters consisting of the adjacent corrosion defects on failure pressure are investigated through non-linear large-deformation finite element method. Typically, the failure behavior and limit strength of submarine pipeline with axial groove- groove corrosion defect pair exposed to interhal pressure are analyzed. The effects of corrosion depth and axial spacing between a pair of corrosion defects on failure pressure are concluded. An interaction relationship for corrosion defects in pipelines, as well as prediction formulations for assessing the remaining strength of corroded pipelines are proposed. The expressions based on the proposed interaction relationship give more accurate results than the methods used in the existing design guidelines.展开更多
A 3-dimensional finite element model was built to determine the effect of inclination angle of a corro sion defect on local mechano-electrochemical(M-E)effect in a simulated soil solution.Because of the high effect of...A 3-dimensional finite element model was built to determine the effect of inclination angle of a corro sion defect on local mechano-electrochemical(M-E)effect in a simulated soil solution.Because of the high effect of the defect inclination angle on the M-E effect,when the inclination angle is 0°(i.e.,the primary axis of the defect parallel to the longitudinal direction of the pipe),the greate st stress concentration level at the defect can be observed,which is associated with the lowest corrosion potential,the greatest anodic current density and the most serious accelerated localized corrosion.When the inclination angle is 90°,the stress concentration level reduces and the corrosion potential becomes less negative,accompanying with the decreased anodic/cathodic current densities.Besides,when the ratio(r_(ca))of the primary axial length of the defect to its secondary axial length is 1,the defect inclination does not affect the stress and the electrochemical corrosion rate at the defect.With the increase of r_(ca),the effect of the defect inclination angle is more apparent.展开更多
A novel automatic ultrasonic system used for the inspection of pipeline girth welds is developed, in which a linear phased array transducer using electronic scan is adopted. Optimal array parameters are determined bas...A novel automatic ultrasonic system used for the inspection of pipeline girth welds is developed, in which a linear phased array transducer using electronic scan is adopted. Optimal array parameters are determined based on a mathematical model of acoustic field for linear phased army derived from Huygens' principle. The testing method and the system structure are introduced. The experimental results show that the phased array transducer system has the same detectability as that of conventional ultrasonic transducer system, but the system architecture can be simplified greatly, and the testing flexibility and the testing speed can be improved greatly.展开更多
By means of elastic-plastic finite element analysis, a systematic nonlinear analysis of material and geometry has been carried out for submarine pipelines. A criterion for deriving limit load is studied. Based on this...By means of elastic-plastic finite element analysis, a systematic nonlinear analysis of material and geometry has been carried out for submarine pipelines. A criterion for deriving limit load is studied. Based on this criterion, the limit load for corroded submarine pipelines is calculated. The corrosion length, corrosion depth and corrosion width affect the limit load. A solution to limit load is proposed and proved valid through comparison of the solution with burst test results and ASME B31G solutions.展开更多
文摘Oil and gas pipelines are affected by many factors,such as pipe wall thinning and pipeline rupture.Accurate prediction of failure pressure of oil and gas pipelines can provide technical support for pipeline safety management.Aiming at the shortcomings of the BP Neural Network(BPNN)model,such as low learning efficiency,sensitivity to initial weights,and easy falling into a local optimal state,an Improved Sparrow Search Algorithm(ISSA)is adopted to optimize the initial weights and thresholds of BPNN,and an ISSA-BPNN failure pressure prediction model for corroded pipelines is established.Taking 61 sets of pipelines blasting test data as an example,the prediction model was built and predicted by MATLAB software,and compared with the BPNN model,GA-BPNN model,and SSA-BPNN model.The results show that the MAPE of the ISSA-BPNN model is 3.4177%,and the R2 is 0.9880,both of which are superior to its comparison model.Using the ISSA-BPNN model has high prediction accuracy and stability,and can provide support for pipeline inspection and maintenance.
基金financially supported by the National Natural Science Foundation of China(Grant No.51309236)Doctoral Foundation of the Ministry of Education of China(Grant No.20120007120009)+2 种基金the Opening Fund of State Key Laboratory of Ocean Engineering(Shanghai Jiao Tong University,Grant No.1314)the Opening Fund of State Key Laboratory of Hydraulic Engineering Simulation and Safety(Tianjin University,Grant No.HESS-1411)the Science Foundation of China University of Petroleum(Beijing)(Grant No.QD-2010-08)
文摘A set of generalized solutions are proposed for estimating ultimate load capacity of pipeline with arbitrary corrosion shapes subjected to combined internal pressure, axial force and bending moment. Isotropic and anisotropic material characteristics in longitudinal and circumferential direction of pipeline are also considered in the proposed equations. Simplified numerical method is used to solve the generalized expressions. The comparisons of numerical results based generalized solutions and full-scale experimental results are carried out. The predicted results agree reasonably well with the experiment results. Meanwhile, the effects of corrosion shapes and locations on the ultimate load capacity are studied.
基金the National Natural Science Foundation of China (GrantNo.50439010)the Ministry of Education of China (Grant No.305003)
文摘Corrosion is one of the main reasons to cause the operation accident of submarine oil and gas transmission pipelines. As the major corrosion pattern in submarine pipelines, the effects of corrosion clusters consisting of the adjacent corrosion defects on failure pressure are investigated through non-linear large-deformation finite element method. Typically, the failure behavior and limit strength of submarine pipeline with axial groove- groove corrosion defect pair exposed to interhal pressure are analyzed. The effects of corrosion depth and axial spacing between a pair of corrosion defects on failure pressure are concluded. An interaction relationship for corrosion defects in pipelines, as well as prediction formulations for assessing the remaining strength of corroded pipelines are proposed. The expressions based on the proposed interaction relationship give more accurate results than the methods used in the existing design guidelines.
基金supported by the National Natural Science Foundation of China(No.51705077)Natural Science Foundation of Fujian Province(No.2018J01768)the University of Calgary。
文摘A 3-dimensional finite element model was built to determine the effect of inclination angle of a corro sion defect on local mechano-electrochemical(M-E)effect in a simulated soil solution.Because of the high effect of the defect inclination angle on the M-E effect,when the inclination angle is 0°(i.e.,the primary axis of the defect parallel to the longitudinal direction of the pipe),the greate st stress concentration level at the defect can be observed,which is associated with the lowest corrosion potential,the greatest anodic current density and the most serious accelerated localized corrosion.When the inclination angle is 90°,the stress concentration level reduces and the corrosion potential becomes less negative,accompanying with the decreased anodic/cathodic current densities.Besides,when the ratio(r_(ca))of the primary axial length of the defect to its secondary axial length is 1,the defect inclination does not affect the stress and the electrochemical corrosion rate at the defect.With the increase of r_(ca),the effect of the defect inclination angle is more apparent.
文摘A novel automatic ultrasonic system used for the inspection of pipeline girth welds is developed, in which a linear phased array transducer using electronic scan is adopted. Optimal array parameters are determined based on a mathematical model of acoustic field for linear phased army derived from Huygens' principle. The testing method and the system structure are introduced. The experimental results show that the phased array transducer system has the same detectability as that of conventional ultrasonic transducer system, but the system architecture can be simplified greatly, and the testing flexibility and the testing speed can be improved greatly.
基金The project was financially supported by the National Technology Research and Development of China (863 Program)(Grant No.2001AA602021)
文摘By means of elastic-plastic finite element analysis, a systematic nonlinear analysis of material and geometry has been carried out for submarine pipelines. A criterion for deriving limit load is studied. Based on this criterion, the limit load for corroded submarine pipelines is calculated. The corrosion length, corrosion depth and corrosion width affect the limit load. A solution to limit load is proposed and proved valid through comparison of the solution with burst test results and ASME B31G solutions.