期刊文献+
共找到582篇文章
< 1 2 30 >
每页显示 20 50 100
Vice-Premier Li Lanqing INSPECTS TIBET
1
《China's Tibet》 2001年第1期3-5,共3页
关键词 LI Vice-Premier Li Lanqing inspects TIBET
下载PDF
Luo Haocai Inspects Human Rights Situation in Northeastern China
2
作者 WANG RUIXUE 《The Journal of Human Rights》 2013年第1期35-36,共2页
President Luo Haocai of the China Society for Human Rights Studies (CSHRS), who is also former vice chair-man of the Chinese People's Political Consultative Conference (CPPCC) National Committee, led a CSHRS del-... President Luo Haocai of the China Society for Human Rights Studies (CSHRS), who is also former vice chair-man of the Chinese People's Political Consultative Conference (CPPCC) National Committee, led a CSHRS del- egation to visit Heilongjiang, Jilin and Liaoning provinces from Sept. 10 to 16, 2012, in order to know more about human rights research and practice as well as promote related training and education in northeast China. Li Buyun, honorary member of the Chinese Academy of Social Sciences (CASS), 展开更多
关键词 In Luo Haocai inspects Human Rights Situation in Northeastern China
下载PDF
基于Inspect投影的高维数据贝叶斯变点检验
3
作者 郭宇婷 施三支 张欣 《长春理工大学学报(自然科学版)》 2024年第5期134-142,共9页
高维数据的多变点检验已经成为了一个热点问题。针对高斯噪声下的高维数据,提出了一种基于Inspect投影的贝叶斯变点检验方法。该方法利用Inspect投影,通过奇异值分解(SVD)计算最优投影方向,沿该方向将高维数据投影到一维空间,并通过引... 高维数据的多变点检验已经成为了一个热点问题。针对高斯噪声下的高维数据,提出了一种基于Inspect投影的贝叶斯变点检验方法。该方法利用Inspect投影,通过奇异值分解(SVD)计算最优投影方向,沿该方向将高维数据投影到一维空间,并通过引入贝叶斯先验信息,对降维后的数据进行变点检验。通过数值模拟,该方法在样本量n,维度p,变点的稀疏度k的不同设置下的检验结果均优于Inspect方法。最后将该方法应用到膀胱肿瘤患者微阵列数据集(ACGH)中。 展开更多
关键词 高维数据 Inspect投影 贝叶斯 变点检验
下载PDF
Central environmental protection inspection and carbon emission reduction: A tripartite evolutionary game model from the perspective of carbon neutrality
4
作者 Zhen-Hua Zhang Dan Ling +2 位作者 Qin-Xin Yang Yan-Chao Feng Jing Xiu 《Petroleum Science》 SCIE EI CAS CSCD 2024年第3期2139-2153,共15页
Since the carbon neutrality target was proposed,many countries have been facing severe challenges to carbon emission reduction sustainably.This study is conducted using a tripartite evolutionary game model to explore ... Since the carbon neutrality target was proposed,many countries have been facing severe challenges to carbon emission reduction sustainably.This study is conducted using a tripartite evolutionary game model to explore the impact of the central environmental protection inspection(CEPI)on driving carbon emission reduction,and to study what factors influence the strategic choices of each party and how they interact with each other.The research results suggest that local governments and manufacturing enterprises would choose strategies that are beneficial to carbon reduction when CEPI increases.When the initial willingness of all parties increases 20%,50%—80%,the time spent for the whole system to achieve stability decreases from 100%,60%—30%.The evolutionary result of“thorough inspection,regulation implementation,low-carbon management”is the best strategy for the tripartite evolutionary game.Moreover,the smaller the cost and the larger the benefit,the greater the likelihood of the three-party game stability strategy appears.This study has important guiding significance for other developing countries to promote carbon emission reduction by environmental policy. 展开更多
关键词 Central environmental protection INSPECTION Local government Manufacturing enterprise Tripartite evolutionary game Carbon emission reduction
下载PDF
Regression Method for Rail Fastener Tightness Based on Center-Line Projection Distance Feature and Neural Network
5
作者 Yuanhang Wang Duxin Liu +4 位作者 Sheng Guo Yifan Wu Jing Liu Wei Li Hongjie Wang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第2期356-371,共16页
In the railway system,fasteners have the functions of damping,maintaining the track distance,and adjusting the track level.Therefore,routine maintenance and inspection of fasteners are important to ensure the safe ope... In the railway system,fasteners have the functions of damping,maintaining the track distance,and adjusting the track level.Therefore,routine maintenance and inspection of fasteners are important to ensure the safe operation of track lines.Currently,assessment methods for fastener tightness include manual observation,acoustic wave detection,and image detection.There are limitations such as low accuracy and efficiency,easy interference and misjudgment,and a lack of accurate,stable,and fast detection methods.Aiming at the small deformation characteristics and large elastic change of fasteners from full loosening to full tightening,this study proposes high-precision surface-structured light technology for fastener detection and fastener deformation feature extraction based on the center-line projection distance and a fastener tightness regression method based on neural networks.First,the method uses a 3D camera to obtain a fastener point cloud and then segments the elastic rod area based on the iterative closest point algorithm registration.Principal component analysis is used to calculate the normal vector of the segmented elastic rod surface and extract the point on the centerline of the elastic rod.The point is projected onto the upper surface of the bolt to calculate the projection distance.Subsequently,the mapping relationship between the projection distance sequence and fastener tightness is established,and the influence of each parameter on the fastener tightness prediction is analyzed.Finally,by setting up a fastener detection scene in the track experimental base,collecting data,and completing the algorithm verification,the results showed that the deviation between the fastener tightness regression value obtained after the algorithm processing and the actual measured value RMSE was 0.2196 mm,which significantly improved the effect compared with other tightness detection methods,and realized an effective fastener tightness regression. 展开更多
关键词 Railway system Fasteners Tightness inspection Neural network regression 3D point cloud processing
下载PDF
Network traffic classification:Techniques,datasets,and challenges
6
作者 Ahmad Azab Mahmoud Khasawneh +2 位作者 Saed Alrabaee Kim-Kwang Raymond Choo Maysa Sarsour 《Digital Communications and Networks》 SCIE CSCD 2024年第3期676-692,共17页
In network traffic classification,it is important to understand the correlation between network traffic and its causal application,protocol,or service group,for example,in facilitating lawful interception,ensuring the... In network traffic classification,it is important to understand the correlation between network traffic and its causal application,protocol,or service group,for example,in facilitating lawful interception,ensuring the quality of service,preventing application choke points,and facilitating malicious behavior identification.In this paper,we review existing network classification techniques,such as port-based identification and those based on deep packet inspection,statistical features in conjunction with machine learning,and deep learning algorithms.We also explain the implementations,advantages,and limitations associated with these techniques.Our review also extends to publicly available datasets used in the literature.Finally,we discuss existing and emerging challenges,as well as future research directions. 展开更多
关键词 Network classification Machine learning Deep learning Deep packet inspection Traffic monitoring
下载PDF
A Railway Fastener Inspection Method Based on Abnormal Sample Generation
7
作者 Shubin Zheng Yue Wang +3 位作者 Liming Li Xieqi Chen Lele Peng Zhanhao Shang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期565-592,共28页
Regular fastener detection is necessary to ensure the safety of railways.However,the number of abnormal fasteners is significantly lower than the number of normal fasteners in real railways.Existing supervised inspect... Regular fastener detection is necessary to ensure the safety of railways.However,the number of abnormal fasteners is significantly lower than the number of normal fasteners in real railways.Existing supervised inspectionmethods have insufficient detection ability in cases of imbalanced samples.To solve this problem,we propose an approach based on deep convolutional neural networks(DCNNs),which consists of three stages:fastener localization,abnormal fastener sample generation based on saliency detection,and fastener state inspection.First,a lightweight YOLOv5s is designed to achieve fast and precise localization of fastener regions.Then,the foreground clip region of a fastener image is extracted by the designed fastener saliency detection network(F-SDNet),combined with data augmentation to generate a large number of abnormal fastener samples and balance the number of abnormal and normal samples.Finally,a fastener inspection model called Fastener ResNet-8 is constructed by being trained with the augmented fastener dataset.Results show the effectiveness of our proposed method in solving the problem of sample imbalance in fastener detection.Qualitative and quantitative comparisons show that the proposed F-SDNet outperforms other state-of-the-art methods in clip region extraction,reaching MAE and max F-measure of 0.0215 and 0.9635,respectively.In addition,the FPS of the fastener state inspection model reached 86.2,and the average accuracy reached 98.7%on 614 augmented fastener test sets and 99.9%on 7505 real fastener datasets. 展开更多
关键词 Railway fastener sample generation inspection model deep learning
下载PDF
Unmanned Aerial Vehicle Inspection Routing and Scheduling for Engineering Management
8
作者 Lu Zhen Zhiyuan Yang +2 位作者 Gilbert Laporte Wen Yi Tianyi Fan 《Engineering》 SCIE EI CAS CSCD 2024年第5期223-239,共17页
Technological advancements in unmanned aerial vehicles(UAVs)have revolutionized various industries,enabling the widespread adoption of UAV-based solutions.In engineering management,UAV-based inspection has emerged as ... Technological advancements in unmanned aerial vehicles(UAVs)have revolutionized various industries,enabling the widespread adoption of UAV-based solutions.In engineering management,UAV-based inspection has emerged as a highly efficient method for identifying hidden risks in high-risk construction environments,surpassing traditional inspection techniques.Building on this foundation,this paper delves into the optimization of UAV inspection routing and scheduling,addressing the complexity introduced by factors such as no-fly zones,monitoring-interval time windows,and multiple monitoring rounds.To tackle this challenging problem,we propose a mixed-integer linear programming(MILP)model that optimizes inspection task assignments,monitoring sequence schedules,and charging decisions.The comprehensive consideration of these factors differentiates our problem from conventional vehicle routing problem(VRP),leading to a mathematically intractable model for commercial solvers in the case of large-scale instances.To overcome this limitation,we design a tailored variable neighborhood search(VNS)metaheuristic,customizing the algorithm to efficiently solve our model.Extensive numerical experiments are conducted to validate the efficacy of our proposed algorithm,demonstrating its scalability for both large-scale and real-scale instances.Sensitivity experiments and a case study based on an actual engineering project are also conducted,providing valuable insights for engineering managers to enhance inspection work efficiency. 展开更多
关键词 Engineering management Unmanned aerial vehicle Inspection routing and scheduling OPTIMIZATION Mixed-integer linear programming model Variable neighborhood search metaheuristic
下载PDF
Distributed Resource Allocation in Dispersed Computing Environment Based on UAV Track Inspection in Urban Rail Transit
9
作者 Tong Gan Shuo Dong +1 位作者 Shiyou Wang Jiaxin Li 《Computers, Materials & Continua》 SCIE EI 2024年第7期643-660,共18页
With the rapid development of urban rail transit,the existing track detection has some problems such as low efficiency and insufficient detection coverage,so an intelligent and automatic track detectionmethod based on... With the rapid development of urban rail transit,the existing track detection has some problems such as low efficiency and insufficient detection coverage,so an intelligent and automatic track detectionmethod based onUAV is urgently needed to avoid major safety accidents.At the same time,the geographical distribution of IoT devices results in the inefficient use of the significant computing potential held by a large number of devices.As a result,the Dispersed Computing(DCOMP)architecture enables collaborative computing between devices in the Internet of Everything(IoE),promotes low-latency and efficient cross-wide applications,and meets users’growing needs for computing performance and service quality.This paper focuses on examining the resource allocation challenge within a dispersed computing environment that utilizes UAV inspection tracks.Furthermore,the system takes into account both resource constraints and computational constraints and transforms the optimization problem into an energy minimization problem with computational constraints.The Markov Decision Process(MDP)model is employed to capture the connection between the dispersed computing resource allocation strategy and the system environment.Subsequently,a method based on Double Deep Q-Network(DDQN)is introduced to derive the optimal policy.Simultaneously,an experience replay mechanism is implemented to tackle the issue of increasing dimensionality.The experimental simulations validate the efficacy of the method across various scenarios. 展开更多
关键词 UAV track inspection dispersed computing resource allocation deep reinforcement learning Markov decision process
下载PDF
Enhanced air-coupled impact echo technique by phase analysis of signals from multiple sensors
10
作者 Najjiya Almallah Nenad Gucunski 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第2期297-310,共14页
This paper presents an air-coupled impact echo(IE)technique that relies on the phase spectrum of the collected data to find the frequencies corresponding to the reflections from delaminations.The proposed technique ta... This paper presents an air-coupled impact echo(IE)technique that relies on the phase spectrum of the collected data to find the frequencies corresponding to the reflections from delaminations.The proposed technique takes advantage of the fact that the IE compression wave is not a propagating wave,but it is the 1st order symmetrical(S1)mode Lamb wave at zero group velocity(S1-ZGV).Therefore,it searches the phase spectra of the data collected by multiple sensors to locate the frequency corresponding to the lowest phase difference.As a result,the technique reduces the effect of propagating waves,including the direct acoustic wave and ambient noise.It is named the Constant Phase IE(CPIE).The performance of the CPIE is experimentally compared with the regular amplitude spectrum-based IE technique and two other multisensor IE techniques.The CPIE shows a performance advantage,especially in a noisy environment. 展开更多
关键词 nondestructive testing(NDT) nondestructive evaluation(NDE) bridge inspection bridge evaluation impact echo bridge delamination concrete bridge deck air-coupled sensing MEMS
下载PDF
Automatic Road Tunnel Crack Inspection Based on Crack Area Sensing and Multiscale Semantic Segmentation
11
作者 Dingping Chen Zhiheng Zhu +1 位作者 Jinyang Fu Jilin He 《Computers, Materials & Continua》 SCIE EI 2024年第4期1679-1703,共25页
The detection of crack defects on the walls of road tunnels is a crucial step in the process of ensuring travel safetyand performing routine tunnel maintenance. The automatic and accurate detection of cracks on the su... The detection of crack defects on the walls of road tunnels is a crucial step in the process of ensuring travel safetyand performing routine tunnel maintenance. The automatic and accurate detection of cracks on the surface of roadtunnels is the key to improving the maintenance efficiency of road tunnels. Machine vision technology combinedwith a deep neural network model is an effective means to realize the localization and identification of crackdefects on the surface of road tunnels.We propose a complete set of automatic inspection methods for identifyingcracks on the walls of road tunnels as a solution to the problem of difficulty in identifying cracks during manualmaintenance. First, a set of equipment applied to the real-time acquisition of high-definition images of walls inroad tunnels is designed. Images of walls in road tunnels are acquired based on the designed equipment, whereimages containing crack defects are manually identified and selected. Subsequently, the training and validationsets used to construct the crack inspection model are obtained based on the acquired images, whereas the regionscontaining cracks and the pixels of the cracks are finely labeled. After that, a crack area sensing module is designedbased on the proposed you only look once version 7 model combined with coordinate attention mechanism (CAYOLOV7) network to locate the crack regions in the road tunnel surface images. Only subimages containingcracks are acquired and sent to the multiscale semantic segmentation module for extraction of the pixels to whichthe cracks belong based on the DeepLab V3+ network. The precision and recall of the crack region localizationon the surface of a road tunnel based on our proposed method are 82.4% and 93.8%, respectively. Moreover, themean intersection over union (MIoU) and pixel accuracy (PA) values for achieving pixel-level detection accuracyare 76.84% and 78.29%, respectively. The experimental results on the dataset show that our proposed two-stagedetection method outperforms other state-of-the-art models in crack region localization and detection. Based onour proposedmethod, the images captured on the surface of a road tunnel can complete crack detection at a speed often frames/second, and the detection accuracy can reach 0.25 mm, which meets the requirements for maintenanceof an actual project. The designed CA-YOLO V7 network enables precise localization of the area to which a crackbelongs in images acquired under different environmental and lighting conditions in road tunnels. The improvedDeepLab V3+ network based on lightweighting is able to extract crack morphology in a given region more quicklywhile maintaining segmentation accuracy. The established model combines defect localization and segmentationmodels for the first time, realizing pixel-level defect localization and extraction on the surface of road tunnelsin complex environments, and is capable of determining the actual size of cracks based on the physical coordinatesystemafter camera calibration. The trainedmodelhas highaccuracy andcanbe extendedandapplied to embeddedcomputing devices for the assessment and repair of damaged areas in different types of road tunnels. 展开更多
关键词 Road tunnel crack inspection crack area sensing multiscale semantic segmentation CA-YOLO V7 DeepLab V3+
下载PDF
Industry-Oriented Detection Method of PCBA Defects Using Semantic Segmentation Models
12
作者 Yang Li Xiao Wang +10 位作者 Zhifan He Ze Wang Ke Cheng Sanchuan Ding Yijing Fan Xiaotao Li Yawen Niu Shanpeng Xiao Zhenqi Hao Bin Gao Huaqiang Wu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第6期1438-1446,共9页
Automated optical inspection(AOI)is a significant process in printed circuit board assembly(PCBA)production lines which aims to detect tiny defects in PCBAs.Existing AOI equipment has several deficiencies including lo... Automated optical inspection(AOI)is a significant process in printed circuit board assembly(PCBA)production lines which aims to detect tiny defects in PCBAs.Existing AOI equipment has several deficiencies including low throughput,large computation cost,high latency,and poor flexibility,which limits the efficiency of online PCBA inspection.In this paper,a novel PCBA defect detection method based on a lightweight deep convolution neural network is proposed.In this method,the semantic segmentation model is combined with a rule-based defect recognition algorithm to build up a defect detection frame-work.To improve the performance of the model,extensive real PCBA images are collected from production lines as datasets.Some optimization methods have been applied in the model according to production demand and enable integration in lightweight computing devices.Experiment results show that the production line using our method realizes a throughput more than three times higher than traditional methods.Our method can be integrated into a lightweight inference system and pro-mote the flexibility of AOI.The proposed method builds up a general paradigm and excellent example for model design and optimization oriented towards industrial requirements. 展开更多
关键词 Automated optical inspection(AOI) deep learning defect detection printed circuit board assembly(PCBA) semantic segmentation.
下载PDF
A Systematic Review of Computer Vision Techniques for Quality Control in End-of-Line Visual Inspection of Antenna Parts
13
作者 Zia Ullah Lin Qi +2 位作者 E.J.Solteiro Pires Arsénio Reis Ricardo Rodrigues Nunes 《Computers, Materials & Continua》 SCIE EI 2024年第8期2387-2421,共35页
The rapid evolution of wireless communication technologies has underscored the critical role of antennas in ensuring seamless connectivity.Antenna defects,ranging from manufacturing imperfections to environmental wear... The rapid evolution of wireless communication technologies has underscored the critical role of antennas in ensuring seamless connectivity.Antenna defects,ranging from manufacturing imperfections to environmental wear,pose significant challenges to the reliability and performance of communication systems.This review paper navigates the landscape of antenna defect detection,emphasizing the need for a nuanced understanding of various defect types and the associated challenges in visual detection.This review paper serves as a valuable resource for researchers,engineers,and practitioners engaged in the design and maintenance of communication systems.The insights presented here pave the way for enhanced reliability in antenna systems through targeted defect detection measures.In this study,a comprehensive literature analysis on computer vision algorithms that are employed in end-of-line visual inspection of antenna parts is presented.The PRISMA principles will be followed throughout the review,and its goals are to provide a summary of recent research,identify relevant computer vision techniques,and evaluate how effective these techniques are in discovering defects during inspections.It contains articles from scholarly journals as well as papers presented at conferences up until June 2023.This research utilized search phrases that were relevant,and papers were chosen based on whether or not they met certain inclusion and exclusion criteria.In this study,several different computer vision approaches,such as feature extraction and defect classification,are broken down and analyzed.Additionally,their applicability and performance are discussed.The review highlights the significance of utilizing a wide variety of datasets and measurement criteria.The findings of this study add to the existing body of knowledge and point researchers in the direction of promising new areas of investigation,such as real-time inspection systems and multispectral imaging.This review,on its whole,offers a complete study of computer vision approaches for quality control in antenna parts.It does so by providing helpful insights and drawing attention to areas that require additional exploration. 展开更多
关键词 Computer vision end-of-line visual inspection of antenna parts machine learning algorithms image processing techniques deep learning models
下载PDF
Development of track geometry inspection equipment for high-speed comprehensive inspection train in China
14
作者 Yan Wang Shibin Wei +2 位作者 Fei Yang Jiyou Fei Jianfeng Guo 《Railway Sciences》 2024年第6期673-683,共11页
Purpose–This study aims to analyze the development direction of track geometry inspection equipment for high-speed comprehensive inspection train in China.Design/methodology/approach–The development of track geometr... Purpose–This study aims to analyze the development direction of track geometry inspection equipment for high-speed comprehensive inspection train in China.Design/methodology/approach–The development of track geometry inspection equipment for highspeed comprehensive inspection train in China in the past 20 years can be divided into 3 stages.Track geometry inspection equipment 1.0 is the stage of analog signal.At the stage 1.0,the first priority is to meet the China’s railways basic needs of pre-operation joint debugging,safety assessment and daily dynamic inspection,maintenance and repair after operation.Track geometry inspection equipment 2.0 is the stage of digital signal.At the stage 2.0,it is important to improve stability and reliability of track geometry inspection equipment by upgrading the hardware sensors and improving software architecture.Track geometry inspection equipment 3.0 is the stage of lightweight.At the stage 3.0,miniaturization,low power consumption,self-running and green economy are co-developing on demand.Findings–The ability of track geometry inspection equipment for high-speed comprehensive inspection train will be expanded.The dynamic inspection of track stiffness changes will be studied under loaded and unloaded conditions in response to the track local settlement,track plate detachment and cushion plate failure.The dynamic measurement method of rail surface slope and vertical curve radius will be proposed,to reveal the changes in railway profile parameters of high-speed railways and the relationship between railway profile,track irregularity and subsidence of subgrade and bridges.The 200 m cut-off wavelength of track regularity will be researched to adapt to the operating speed of 400 km/h.Originality/value–The research can provide new connotations and requirements of track geometry inspection equipment for high-speed comprehensive inspection train in the new railway stage. 展开更多
关键词 Track geometry inspection equipment High-speed comprehensive inspection Potential tapping requirements and technological direction High-speed railway
下载PDF
Progression of e-ticketing implementation for state transportation agencies for asphalt materials
15
作者 Joshua Withrow Gabriel B.Dadi Hala Nassereddine 《Journal of Road Engineering》 2024年第1期80-92,共13页
E-ticketing,which has been promoted by the Federal Highway Administration(FHWA)“every day counts”(EDC)initiative,utilizes software applications to digitally track and store information regarding highway construction... E-ticketing,which has been promoted by the Federal Highway Administration(FHWA)“every day counts”(EDC)initiative,utilizes software applications to digitally track and store information regarding highway construction materials paid by state transportation agencies(STAs)by weight in unit bid contract structures.STAs often face implementation barriers such as institutional inertia,or the resistance by stakeholders to adopt changes from the status quo,including new technologies.The purpose of this paper is to determine the progression of STA e-ticketing policy adoption,specifically with a focus on asphalt paving operations,due to the COVID-19 pandemic.To accomplish this research effort,previous FHWA data,National Cooperative Highway Research Program(NCHRP)data,and other literatures are reviewed to determine an implementation baseline.Additional data is collected from the American Association of State Highway and Transportation Officials Committee on Con-struction to gain current feedback from STAs and their highway contractor partners after the COVID-19 pandemic.Additionally,a case study featuring the Kentucky Transportation Cabinet(KYTC),the Kentucky Association of Highway Contractors(KAHC),and the Plantmix Asphalt Industry of Kentucky(PAIKY)is performed to provide more in-depth analysis.The major finding includes a statistically significant result indicating increased imple-mentation of e-ticketing for asphalt operations within the last two years,along with noting benefits including employee safety,task loading,and project documentation along with concerns regarding cellular connectivity and procurement responsibilities.These findings indicate the importance of STAs investing in partnership with con-tractors to improve stakeholder buy-in before proceeding towards e-ticketing adoption. 展开更多
关键词 Asphalt paving Construction inspection E-TICKETING COVID-19
下载PDF
High-speed railway track components inspection framework based on YOLOv8 with high-performance model deployment
16
作者 Youzhi Tang Yu Qian 《High-Speed Railway》 2024年第1期42-50,共9页
Railway inspection poses significant challenges due to the extensive use of various components in vast railway networks,especially in the case of high-speed railways.These networks demand high maintenance but offer on... Railway inspection poses significant challenges due to the extensive use of various components in vast railway networks,especially in the case of high-speed railways.These networks demand high maintenance but offer only limited inspection windows.In response,this study focuses on developing a high-performance rail inspection system tailored for high-speed railways and railroads with constrained inspection timeframes.This system leverages the latest artificial intelligence advancements,incorporating YOLOv8 for detection.Our research introduces an efficient model inference pipeline based on a producer-consumer model,effectively utilizing parallel processing and concurrent computing to enhance performance.The deployment of this pipeline,implemented using C++,TensorRT,float16 quantization,and oneTBB,represents a significant departure from traditional sequential processing methods.The results are remarkable,showcasing a substantial increase in processing speed:from 38.93 Frames Per Second(FPS)to 281.06 FPS on a desktop system equipped with an Nvidia RTX A6000 GPU and from 19.50 FPS to 200.26 FPS on the Nvidia Jetson AGX Orin edge computing platform.This proposed framework has the potential to meet the real-time inspection requirements of high-speed railways. 展开更多
关键词 High-speed railway Track inspection Computer vision Deep learning Edge computing Real-time decision making
下载PDF
A path planning method for robot patrol inspection in chemical industrial parks
17
作者 王伟峰 YANG Ze +1 位作者 LI Zhao ZHAO Xuanchong 《High Technology Letters》 EI CAS 2024年第2期109-116,共8页
Safety patrol inspection in chemical industrial parks is a complex multi-objective task with multiple degrees of freedom.Traditional pointer instruments with advantages like high reliability and strong adaptability to... Safety patrol inspection in chemical industrial parks is a complex multi-objective task with multiple degrees of freedom.Traditional pointer instruments with advantages like high reliability and strong adaptability to harsh environment,are widely applied in such parks.However,they rely on manual readings which have problems like heavy patrol workload,high labor cost,high false positives/negatives and poor timeliness.To address the above problems,this study proposes a path planning method for robot patrol in chemical industrial parks,where a path optimization model based on improved iterated local search and random variable neighborhood descent(ILS-RVND)algorithm is established by integrating the actual requirements of patrol tasks in chemical industrial parks.Further,the effectiveness of the model and algorithm is verified by taking real park data as an example.The results show that compared with GA and ILS-RVND,the improved algorithm reduces quantification cost by about 24%and saves patrol time by about 36%.Apart from shortening the patrol time of robots,optimizing their patrol path and reducing their maintenance loss,the proposed algorithm also avoids the untimely patrol of robots and enhances the safety factor of equipment. 展开更多
关键词 path planning robot patrol inspection iterated local search and random variableneighborhood descent(ILS-RVND)algorithm
下载PDF
中国电动机质量监管及标准体系概述
18
作者 王鑫 辛勇 +1 位作者 孙玉泉 丛林 《China Standardization》 2024年第4期69-73,共5页
This paper systematically analyzes the product quality supervision methods in China,introduces the main functions of market regulation departments and the product supervision and random inspection process,and introduc... This paper systematically analyzes the product quality supervision methods in China,introduces the main functions of market regulation departments and the product supervision and random inspection process,and introduces the channels for feedback on consumers’quality and safety problems,the online platform for consumer problem disposal.It also summarizes the main standards categories and standards systems for electric motors in China,and the standards and key inspection items for supervision and random inspection. 展开更多
关键词 electric motor quality supervision supervision and random inspection STANDARDS
下载PDF
Bridge Condition Assessment by Visual Inspection-Croatian Experience
19
作者 Goran Puž 《Journal of Civil Engineering and Architecture》 2024年第10期504-514,共11页
Most decisions relating to bridge maintenance are founded on assessments that are based on visual inspections conducted by specially trained engineers,using procedures and aids defined in the management system.Visual ... Most decisions relating to bridge maintenance are founded on assessments that are based on visual inspections conducted by specially trained engineers,using procedures and aids defined in the management system.Visual inspection is the main tool for bridge condition assessment,and is therefore of crucial significance for planning periodic maintenance activities.Paper shall present the study aimed at harmonizing bridge assessment activities,which was conducted in early 2012 in company Hrvatske ceste-Croatian National Road Authority.Small RC bridges were chosen for this study,since visual inspection is usually only tool utilized for their assessment.Ratings obtained by inspection were analyzed using methods of mathematical statistics.The results point to weaknesses in the current assessment system,while the study itself constitutes a good basis for further improvement of management aids,manuals and procedures for bridge inspection. 展开更多
关键词 Visual inspection concrete bridges bridge management bridge rating
下载PDF
Calibration of CO and CO2 Monitors Used in Periodic Inspection of Vehicles at Fixed Stations for Environmental Control
20
作者 Adel Bassuoni Shehata Abdulrahman Rashed Al Askar +2 位作者 Najjy Hamad Al Yami Abdullah Suleiman Al Owaysi Sultan K. Alharbi 《Green and Sustainable Chemistry》 2024年第2期29-41,共13页
Global efforts for environmental cleanliness through the control of gaseous emissions from vehicles are gaining momentum and attracting increasing attention. Calibration plays a crucial role in these efforts by ensuri... Global efforts for environmental cleanliness through the control of gaseous emissions from vehicles are gaining momentum and attracting increasing attention. Calibration plays a crucial role in these efforts by ensuring the quantitative assessment of emissions for informed decisions on environmental treatments. This paper describes a method for the calibration of CO/CO<sub>2</sub> monitors used for periodic inspections of vehicles in cites. The calibration was performed in the selected ranges: 900 - 12,000 µmol/mol for CO and 2000 - 20,000 µmol/mol for CO<sub>2</sub>. The traceability of the measurement results to the SI units was ensured by using certified reference materials from CO/N<sub>2</sub> and CO<sub>2</sub>/N<sub>2</sub> primary gas mixtures. The method performance was evaluated by assessing its linearity, accuracy, precision, bias, and uncertainty of the calibration results. The calibration data exhibited a strong linear trend with R² values close to 1, indicating an excellent fit between the measured values and the calibration lines. Precision, expressed as relative standard deviation (%RSD), ranged from 0.48 to 4.56% for CO and from 0.97 to 3.53% for CO<sub>2</sub>, staying well below the 5% threshold for reporting results at a 95% confidence level. Accuracy measured as percent recovery, was consistently high (≥ 99.1%) for CO and ranged from 84.90% to 101.54% across the calibration range for CO<sub>2</sub>. In addition, the method exhibited minimal bias for both CO and CO<sub>2</sub> calibrations and thus provided a reliable and accurate approach for calibrating CO/CO<sub>2</sub> monitors used in vehicle inspections. Thus, it ensures the effectiveness of exhaust emission control for better environment. 展开更多
关键词 MONITORS Periodic Inspection CO/CO2 Calibration LINEARITY Precision Accuracy
下载PDF
上一页 1 2 30 下一页 到第
使用帮助 返回顶部