期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Dynamic soft sensor development based on Gaussian mixture regression for fermentation processes 被引量:9
1
作者 Congli Mei Yong Su +2 位作者 Guohai Liu Yuhan Ding Zhiling Liao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第1期116-122,共7页
The dynamic soft sensor based on a single Gaussian process regression(GPR) model has been developed in fermentation processes.However,limitations of single regression models,for multiphase/multimode fermentation proce... The dynamic soft sensor based on a single Gaussian process regression(GPR) model has been developed in fermentation processes.However,limitations of single regression models,for multiphase/multimode fermentation processes,may result in large prediction errors and complexity of the soft sensor.Therefore,a dynamic soft sensor based on Gaussian mixture regression(GMR) was proposed to overcome the problems.Two structure parameters,the number of Gaussian components and the order of the model,are crucial to the soft sensor model.To achieve a simple and effective soft sensor,an iterative strategy was proposed to optimize the two structure parameters synchronously.For the aim of comparisons,the proposed dynamic GMR soft sensor and the existing dynamic GPR soft sensor were both investigated to estimate biomass concentration in a Penicillin simulation process and an industrial Erythromycin fermentation process.Results show that the proposed dynamic GMR soft sensor has higher prediction accuracy and is more suitable for dynamic multiphase/multimode fermentation processes. 展开更多
关键词 Dynamic modeling Process systems instrumentation Gaussian mixture regression Fermentation processes
下载PDF
Closed-loop identification of systems using hybrid Box–Jenkins structure and its application to PID tuning 被引量:1
2
作者 李全善 李大字 曹柳林 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第12期1997-2004,共8页
The paper describes a closed-loop system identification procedure for hybrid continuous-time Box–Jenkins models and demonstrates how it can be used for IMC based PID controller tuning. An instrumental variable algori... The paper describes a closed-loop system identification procedure for hybrid continuous-time Box–Jenkins models and demonstrates how it can be used for IMC based PID controller tuning. An instrumental variable algorithm is used to identify hybrid continuous-time transfer function models of the Box–Jenkins form from discretetime prefiltered data, where the process model is a continuous-time transfer function, while the noise is represented as a discrete-time ARMA process. A novel penalized maximum-likelihood approach is used for estimating the discrete-time ARMA process and a circulatory noise elimination identification method is employed to estimate process model. The input–output data of a process are affected by additive circulatory noise in a closedloop. The noise-free input–output data of the process are obtained using the proposed method by removing these circulatory noise components. The process model can be achieved by using instrumental variable estimation method with prefiltered noise-free input–output data. The performance of the proposed hybrid parameter estimation scheme is evaluated by the Monte Carlo simulation analysis. Simulation results illustrate the efficacy of the proposed procedure. The methodology has been successfully applied in tuning of IMC based flow controller and a practical application demonstrates the applicability of the algorithm. 展开更多
关键词 Hybrid Box–Jenkins models ARMA models instrumental variable Closed-loop identification PID tuning
下载PDF
Iterative identification of output error model for industrial processes with time delay subject to colored noise 被引量:1
3
作者 董世健 刘涛 +1 位作者 李明忠 曹毅 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第12期2005-2012,共8页
To deal with colored noise and unexpected load disturbance in identification of industrial processes with time delay, a bias-eliminated iterative least-squares(ILS) identification method is proposed in this paper to e... To deal with colored noise and unexpected load disturbance in identification of industrial processes with time delay, a bias-eliminated iterative least-squares(ILS) identification method is proposed in this paper to estimate the output error model parameters and time delay simultaneously. An extended observation vector is constructed to establish an ILS identification algorithm. Moreover, a variable forgetting factor is introduced to enhance the convergence rate of parameter estimation. For consistent estimation, an instrumental variable method is given to deal with the colored noise. The convergence and upper bound error of parameter estimation are analyzed. Two illustrative examples are used to show the effectiveness and merits of the proposed method. 展开更多
关键词 Time delay system Output error model Recursive least-squares instrumental variable Variable forgetting factor
下载PDF
Integration system research and development for three-dimensional laser scanning information visualization in goaf 被引量:1
4
作者 罗周全 黄俊杰 +2 位作者 罗贞焱 汪伟 秦亚光 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第7期1985-1994,共10页
An integration processing system of three-dimensional laser scanning information visualization in goaf was developed. It is provided with multiple functions, such as laser scanning information management for goaf, clo... An integration processing system of three-dimensional laser scanning information visualization in goaf was developed. It is provided with multiple functions, such as laser scanning information management for goaf, cloud data de-noising optimization, construction, display and operation of three-dimensional model, model editing, profile generation, calculation of goaf volume and roof area, Boolean calculation among models and interaction with the third party soft ware. Concerning this system with a concise interface, plentiful data input/output interfaces, it is featured with high integration, simple and convenient operations of applications. According to practice, in addition to being well-adapted, this system is favorably reliable and stable. 展开更多
关键词 GOAF laser scanning visualization integration system 1 Introduction The goaf formed through underground mining of mineral resources is one of the main disaster sources threatening mine safety production [1 2]. Effective implementation of goaf detection and accurate acquisition of its spatial characteristics including the three-dimensional morphology the spatial position as well as the actual boundary and volume are important basis to analyze predict and control disasters caused by goaf. In recent years three-dimensional laser scanning technology has been effectively applied in goaf detection [3 4]. Large quantities of point cloud data that are acquired for goaf by means of the three-dimensional laser scanning system are processed relying on relevant engineering software to generate a three-dimensional model for goaf. Then a general modeling analysis and processing instrument are introduced to perform subsequent three-dimensional analysis and calculation [5 6]. Moreover related development is also carried out in fields such as three-dimensional detection and visualization of hazardous goaf detection and analysis of unstable failures in goaf extraction boundary acquisition in stope visualized computation of damage index aided design for pillar recovery and three-dimensional detection
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部