Typical multidisciplinary design optimization(MDO) has gradually been proposed to balance performances of lightweight, noise, vibration and harshness(NVH) and safety for instrument panel(IP) structure in the aut...Typical multidisciplinary design optimization(MDO) has gradually been proposed to balance performances of lightweight, noise, vibration and harshness(NVH) and safety for instrument panel(IP) structure in the automotive development. Nevertheless, plastic constitutive relation of Polypropylene(PP) under different strain rates, has not been taken into consideration in current reliability-based and collaborative IP MDO design. In this paper, based on tensile test under different strain rates, the constitutive relation of Polypropylene material is studied. Impact simulation tests for head and knee bolster are carried out to meet the regulation of FMVSS 201 and FMVSS 208, respectively. NVH analysis is performed to obtain mainly the natural frequencies and corresponding mode shapes, while the crashworthiness analysis is employed to examine the crash behavior of IP structure. With the consideration of lightweight, NVH, head and knee bolster impact performance, design of experiment(DOE), response surface model(RSM), and collaborative optimization(CO) are applied to realize the determined and reliability-based optimizations, respectively. Furthermore, based on multi-objective genetic algorithm(MOGA), the optimal Pareto sets are completed to solve the multi-objective optimization(MOO) problem. The proposed research ensures the smoothness of Pareto set, enhances the ability of engineers to make a comprehensive decision about multi-objectives and choose the optimal design, and improves the quality and efficiency of MDO.展开更多
Tubular hydroforming has attracted increased attention in the vehicle industry recently. This paper covers a complete hydroforming process design for an instrum ent panel frame by finite element simulation using the e...Tubular hydroforming has attracted increased attention in the vehicle industry recently. This paper covers a complete hydroforming process design for an instrum ent panel frame by finite element simulation using the explicit code LS-DYNA. The manufacturing process for the instrument panel frame consists of tube pre-be nding and final hydroforming. To accomplish hydroforming process design successf ully, a thorough investigation of proper combination of process parameters such as internal hydraulic pressure and axial feeding is carried out by finite element simulation to predict the tube wall thickness and shape. An optimized process parameter combination is obtained and verified by the instrument panel frame hyd roforming experiment. The experiment shows that designed process parameters can be used in real production through FEA simulation, but tubular thinned amplitu de by FEA is less than that with the experiment.展开更多
Global population aging trends are intensifying,presenting multifaceted economic and social challenges for countries worldwide.As the world’s largest developing country,China has entered a phase of extreme demographi...Global population aging trends are intensifying,presenting multifaceted economic and social challenges for countries worldwide.As the world’s largest developing country,China has entered a phase of extreme demographic aging,posing significant questions about its impact on the ongoing upgrading of industrial structures.How does this demographic shift influence the upgrading of industrial structures,and does technological innovation mitigate or exacerbate this impact?The empirical results indicate that population aging impedes upgrading the industrial structure,while technological innovation positively affects the relationship between the two.Moreover,using technological innovation as a threshold variable,the impact of population aging on industrial structure upgrading evolves in a“gradient”manner from“impediment”to“insignificant”to“promotion”as the technological innovation levels increase.These findings offer practical guidance for tailoring industrial policies to different stages of technological advancement.展开更多
The explosive technological improvement of photovoltaic systems as well as the necessity of populations to come to less expensive energy sources, that have led to an implosion at the level of solar panel manufacturers...The explosive technological improvement of photovoltaic systems as well as the necessity of populations to come to less expensive energy sources, that have led to an implosion at the level of solar panel manufacturers. This causes a large flow of these equipments to developing countries where the need is high, without any quality control. That conducted an experimental investigation on the performance characteristics of a 250 wp monocrystalline silicon photovoltaic module in other to check the verification and quality control. Most of these PV panels which often have missing informations are manufactured and tested in places that are inadequate for our environmental and meteorological conditions. Also, their influences on the stability of internal parameters were evaluated in order to optimize their performance. The results obtained at maximum illumination (1000 w/m<sup>2</sup>) confirmed those produced by the manufacturer. The analysis of these characteristics showed that the illumination and the temperature (meteorological factors) influenced at most the stability of the internal characteristics of the module in the sense that the maximum power increased very rapidly beyond 750 w/m<sup>2</sup> but a degradation of performance was accentuated for a temperature of the solar cells exceeding 50°C. The degradation coefficients were evaluated at -0.0864 V/°C for the voltage and at -1.6248 w/°C for the power. The 10° inclination angle of the solar panel proved to be ideal for optimizing overall efficiency in practical situations.展开更多
基金supported by National Hi-tech Research and Development Program of China(863 Program, Grant No. 2007AA04Z132)National Natural Science Foundation of China(Grant No. 51175379)
文摘Typical multidisciplinary design optimization(MDO) has gradually been proposed to balance performances of lightweight, noise, vibration and harshness(NVH) and safety for instrument panel(IP) structure in the automotive development. Nevertheless, plastic constitutive relation of Polypropylene(PP) under different strain rates, has not been taken into consideration in current reliability-based and collaborative IP MDO design. In this paper, based on tensile test under different strain rates, the constitutive relation of Polypropylene material is studied. Impact simulation tests for head and knee bolster are carried out to meet the regulation of FMVSS 201 and FMVSS 208, respectively. NVH analysis is performed to obtain mainly the natural frequencies and corresponding mode shapes, while the crashworthiness analysis is employed to examine the crash behavior of IP structure. With the consideration of lightweight, NVH, head and knee bolster impact performance, design of experiment(DOE), response surface model(RSM), and collaborative optimization(CO) are applied to realize the determined and reliability-based optimizations, respectively. Furthermore, based on multi-objective genetic algorithm(MOGA), the optimal Pareto sets are completed to solve the multi-objective optimization(MOO) problem. The proposed research ensures the smoothness of Pareto set, enhances the ability of engineers to make a comprehensive decision about multi-objectives and choose the optimal design, and improves the quality and efficiency of MDO.
文摘Tubular hydroforming has attracted increased attention in the vehicle industry recently. This paper covers a complete hydroforming process design for an instrum ent panel frame by finite element simulation using the explicit code LS-DYNA. The manufacturing process for the instrument panel frame consists of tube pre-be nding and final hydroforming. To accomplish hydroforming process design successf ully, a thorough investigation of proper combination of process parameters such as internal hydraulic pressure and axial feeding is carried out by finite element simulation to predict the tube wall thickness and shape. An optimized process parameter combination is obtained and verified by the instrument panel frame hyd roforming experiment. The experiment shows that designed process parameters can be used in real production through FEA simulation, but tubular thinned amplitu de by FEA is less than that with the experiment.
基金supported by the Research Center for Aging Career and Industrial Development,Sichuan Key Research Base of Social Sciences[Grant No.XJLL2022009].
文摘Global population aging trends are intensifying,presenting multifaceted economic and social challenges for countries worldwide.As the world’s largest developing country,China has entered a phase of extreme demographic aging,posing significant questions about its impact on the ongoing upgrading of industrial structures.How does this demographic shift influence the upgrading of industrial structures,and does technological innovation mitigate or exacerbate this impact?The empirical results indicate that population aging impedes upgrading the industrial structure,while technological innovation positively affects the relationship between the two.Moreover,using technological innovation as a threshold variable,the impact of population aging on industrial structure upgrading evolves in a“gradient”manner from“impediment”to“insignificant”to“promotion”as the technological innovation levels increase.These findings offer practical guidance for tailoring industrial policies to different stages of technological advancement.
文摘The explosive technological improvement of photovoltaic systems as well as the necessity of populations to come to less expensive energy sources, that have led to an implosion at the level of solar panel manufacturers. This causes a large flow of these equipments to developing countries where the need is high, without any quality control. That conducted an experimental investigation on the performance characteristics of a 250 wp monocrystalline silicon photovoltaic module in other to check the verification and quality control. Most of these PV panels which often have missing informations are manufactured and tested in places that are inadequate for our environmental and meteorological conditions. Also, their influences on the stability of internal parameters were evaluated in order to optimize their performance. The results obtained at maximum illumination (1000 w/m<sup>2</sup>) confirmed those produced by the manufacturer. The analysis of these characteristics showed that the illumination and the temperature (meteorological factors) influenced at most the stability of the internal characteristics of the module in the sense that the maximum power increased very rapidly beyond 750 w/m<sup>2</sup> but a degradation of performance was accentuated for a temperature of the solar cells exceeding 50°C. The degradation coefficients were evaluated at -0.0864 V/°C for the voltage and at -1.6248 w/°C for the power. The 10° inclination angle of the solar panel proved to be ideal for optimizing overall efficiency in practical situations.