Global population aging trends are intensifying,presenting multifaceted economic and social challenges for countries worldwide.As the world’s largest developing country,China has entered a phase of extreme demographi...Global population aging trends are intensifying,presenting multifaceted economic and social challenges for countries worldwide.As the world’s largest developing country,China has entered a phase of extreme demographic aging,posing significant questions about its impact on the ongoing upgrading of industrial structures.How does this demographic shift influence the upgrading of industrial structures,and does technological innovation mitigate or exacerbate this impact?The empirical results indicate that population aging impedes upgrading the industrial structure,while technological innovation positively affects the relationship between the two.Moreover,using technological innovation as a threshold variable,the impact of population aging on industrial structure upgrading evolves in a“gradient”manner from“impediment”to“insignificant”to“promotion”as the technological innovation levels increase.These findings offer practical guidance for tailoring industrial policies to different stages of technological advancement.展开更多
Standard mica was used to correct the X-ray powder diffraction instrument error and mathematic methods were employed to find the correction equation. By analyzing mullite sample and comparing the corrected and uncorre...Standard mica was used to correct the X-ray powder diffraction instrument error and mathematic methods were employed to find the correction equation. By analyzing mullite sample and comparing the corrected and uncorrected analysis results we found the former is obviously more reasonable. So the conclusion is that the X-ray powder diffraction instrument error greatly affects the crystalline structure analysis, and the above method is convenient and effective for the correction of instrument error.展开更多
A two-dimensional electromagnetic particle-in-cell simulation model is proposed to study the density evolution and collective stopping of electron beams in background plasmas.We show here the formation of the multi-la...A two-dimensional electromagnetic particle-in-cell simulation model is proposed to study the density evolution and collective stopping of electron beams in background plasmas.We show here the formation of the multi-layer structure of the relativistic electron beam in the plasma due to the different betatron frequency from the beam front to the beam tail.Meanwhile,the nonuniformity of the longitudinal wakefield is the essential reason for the multi-layer structure formation in beam phase space.The influences of beam parameters(beam radius and transverse density profile)on the formation of the multi-layer structure and collective stopping in background plasmas are also considered.展开更多
Various nanostructured architectures have been demonstrated to be effective to address the issues of high capacity Si anodes. However, the scale-up of these nano-Si materials is still a critical obstacle for commercia...Various nanostructured architectures have been demonstrated to be effective to address the issues of high capacity Si anodes. However, the scale-up of these nano-Si materials is still a critical obstacle for commercialization. Herein, we use industrial ferrosilicon as low-cost Si source and introduce a facile and scalable method to fabricate a micrometer-sized ferrosilicon/C composite anode, in which ferrosilicon microparticles are wrapped with multi-layered carbon nanosheets. The multi-layered carbon nanosheets could effectively buffer the volume variation of Si as well as create an abundant and reliable conductivity framework, ensuring fast transport of electrons. As a result, the micrometer-sized ferrosilicon/C anode achieves a stable cycling with 805.9 m Ah g-1 over 200 cycles at 500 mA g-1 and a good rate capability of455.6 mAh g-1 at 10 A g-1. Therefore, our approach based on ferrosilicon provides a new opportunity in fabricating cost-effective, pollution-free, and large-scale Si electrode materials for high energy lithium-ion batteries.展开更多
Glass fibre-reinforced(GFR)structure is extensively used in radome,spoiler and some other equipment.In engineering practice,due to the influence of wear,aging,impact,chemical corrosion of surface structure and other f...Glass fibre-reinforced(GFR)structure is extensively used in radome,spoiler and some other equipment.In engineering practice,due to the influence of wear,aging,impact,chemical corrosion of surface structure and other factors,the internal structure of this kind of structure gradually evolves into a defect state and expands to form defects such as bubbles,scratches,shorts,cracks,cavitation erosion,stains and other defects.These defects have posed a serious threat to the quality and performance of GFR structure.From the propagation process of GFR structure defects,its duration is random and may be very short.Therefore,designing a scientific micro defect intelligent detection system for GFR structure to enhance the maintainability of GFR structure will not only help to reduce emergencies,but also have positive theoretical significance and application value to ensure safe production and operation.Firstly,the defect detection mechanism of GFR structure is discussed,and the defect detection principle and defect area identification method are analyzed.Secondly,the processing process of defect edge signal is discussed,a classifier based on MLP is established,and the algorithm of the classifier is designed.Finally,the effectiveness of this method is proved by real-time monitoring and defect diagnosis of a typical GFR structure.The experimental results show that this method improves the efficiency of defect detection and has high defect feature recognition accuracy,which provides a new idea for the on-line detection of GFR structure defects.展开更多
Based on the overall consideration of individual behaviors of Ricardian and non-Ricardian households, this paper develops a New Keynesian dynamic stochastic general equilibrium(DSGE) model to form a relatively systema...Based on the overall consideration of individual behaviors of Ricardian and non-Ricardian households, this paper develops a New Keynesian dynamic stochastic general equilibrium(DSGE) model to form a relatively systematic research framework for analyzing the economic effects of structural fiscal instruments. Our study findsthat great differences exist in the macroeconomic effects of different fiscal instruments, suggesting that the government should prudently select these fiscal instruments in fiscal macro-control. The simulating results of fiscal shocks show that the effect of tax cut is superior to the effect of increased spending. In the context of slowing economic growth and less potent stimulation policy, the government should transform its previous regulatory approach of fiscal policy and shift from hefty spending stimulus policy to structural tax cuts. This paper believes that China should step up the implementation of public-private partnership, increase its spending on social security, healthcare, pension and public services and facilitate the transition toward a service-based government; and that tax policy should focus on structural tax cuts on consumption to promote the transition of demand structure toward consumption-driven.展开更多
Stress distribution in the gradient multi-layered surface under a sliding contact was investigated using finite element method(FEM). The main structure parameters of layered surface discussed are total layer thickness...Stress distribution in the gradient multi-layered surface under a sliding contact was investigated using finite element method(FEM). The main structure parameters of layered surface discussed are total layer thickness,layer number and elastic modulus ratio of layer to the substrate. A model of multi-layered surface contact with rough slider was studied. The effect of the surface structure parameters on the elastic-plastic deformation was analyzed.展开更多
A simple model for approximate bandgap structure calculation of all-solid photonic bandgap fibre based on an array of rings is proposed. In this model calculated are only the potential modes of a unit cell, which is a...A simple model for approximate bandgap structure calculation of all-solid photonic bandgap fibre based on an array of rings is proposed. In this model calculated are only the potential modes of a unit cell, which is a high-index ring in the low-index background for this fibre, rather than the whole cladding periodic structure based on Bloch's theorem to find the bandgap. Its accuracy is proved by comparing its results with the results obtained by using the accurate full-vector plane-wave method. High speed in computation is its great advantage over the other exact methods, because it only needs to find the roots of one-dimensional analytical expressions. And the results of this model, mode plots, offer an ideal environment to explore the basic properties of photonie bandgap clearly.展开更多
In/Pd-doped SnO2 is synthesized via a sol-gel method and coated on a silicon substrate with Pt electrodes to fabricate a micro-structure sensor. The sensor can be used to detect CO down to l ppm (the sensitivity is a...In/Pd-doped SnO2 is synthesized via a sol-gel method and coated on a silicon substrate with Pt electrodes to fabricate a micro-structure sensor. The sensor can be used to detect CO down to l ppm (the sensitivity is about 3), and the response time and recovery time are about 5 and 15 s, respectively. Excellent selectivity is also found based on our sensor. These results demonstrate a promising approach to fabricate high-performance CO sensors with high sensitivity and quick response.展开更多
Detachment structures occur widely in the crust, and it is the commonest and most important deformation type developed in the region between orogenic belts and basins. The 'comb-like' and 'toughlike' fold belts in...Detachment structures occur widely in the crust, and it is the commonest and most important deformation type developed in the region between orogenic belts and basins. The 'comb-like' and 'toughlike' fold belts in eastern Sichuan are caused by multi-layer detachment. The duplex structure is the most important deformation style in the region, exhibiting different characteristics from typical detachment structures. Different deformation styles, scales, and shortenings resulting from independent deformations of various detachment systems would lead to the phenomenon whereby most of the topographical heights in the region do not correspond to the structural heights in depth. Based on systematic structural analysis and combined with practical oil/gas prospecting, four types of structural traps are described from eastern Sichuan Province, which are: detachment and thrust trap; detachment folding trap; fault-flat blocking trap; and detachment layer trap. Meticulous studies on the deformation and distribution of detachment layers in the eastern Sichuan Province will contribute to oil/gas prospecting and selection of potential regions of marine-origin oil/gas prospecting in South China.展开更多
In order to improve the flexibility of the surgical instruments, a wire-driven wrist-like structure is proposed in this paper. The instrument has three degrees of freedom (DOFs) of rotation, yaw, opening and closing. ...In order to improve the flexibility of the surgical instruments, a wire-driven wrist-like structure is proposed in this paper. The instrument has three degrees of freedom (DOFs) of rotation, yaw, opening and closing. Furthermore, we also acknowledge no coupling motion for each DOF. Moreover, the self-locking motion contributes to sustaining joint posture under external force. A static analysis for the end effector was conducted using the ANSYS software. At the end of this paper, a series of experiments for the prototype was performed. The results revealed that for the same surgical task, the proposed instrument had higher flexibility and the completion time of the operation tasks was obviously less than that of the traditional instrument. The results of the self-locking and operating force test showed that the surgical instruments perform well in maintaining joint posture under the force of 8.2N. The proposed surgical instrument meets the requirements of minimally invasive surgery (MIS).展开更多
A better understanding of the mechanical behavior of the multilayered structure under extermal loading is the most important item for the structural design and the risk asssment.The objective of this study are to prop...A better understanding of the mechanical behavior of the multilayered structure under extermal loading is the most important item for the structural design and the risk asssment.The objective of this study are to propose and develop an analytical solution for the mechanical behaviors of multi-layered structure generated by axisy mmetric loading,and to investigate the impact of anisotropic layers and interlayer conditions on the multi-layered structure.To reach these objectives,first,according to the goveming equations,the analytical solution for a single layer was formulated by adopting the spatial Hankel transform.Then the global matrix technique is applied to achieve the analytical solution of multi-layered structure in Hankel domain.The sliding and bonded interlayer conditions were considered in this process.Finally,the numerical inversion of integral transform was used to solve the components of displacement and stress in real domain.Gauss-Lcgendre quadrature is a key scheme in the numerical inversion process.Moreover,following by the verification of the proposed analytical solution,one typical three-layered flexible pavement was applied as the computing carrier of numerical analysis for the multi-layered structure.The results have shown that the anisotropic layers and the interlayer conditions significantly affect the mechanical behaviors of the proposed structure.展开更多
We prepare the gallium oxide (β-Ga2O3) nanomaterials from gallium and oxygen by thermal evaporation in the argon atmosphere and research their oxygen sensing under UV illumination with different oxygen pressures. X...We prepare the gallium oxide (β-Ga2O3) nanomaterials from gallium and oxygen by thermal evaporation in the argon atmosphere and research their oxygen sensing under UV illumination with different oxygen pressures. X-ray diffraction reveals that the synthesized product is monoclinic gallium oxide, it is further confirmed by electron diffraction of transmission electron microscope, and its morphology through the observation using scanning electron microscope reveals thatβ-Ga2O3 nanobelts with a breadth less than lOOnm and length of severai micrometers are synthesized under low oxygen pressure, while the nano/microbelts are synthesized under high oxygen pressure. Room-temperature oxygen sensing is tested under at 254 nm illumination and it is found that the current decreases quickly first and then slowly with oxygen pressure from low to high.展开更多
The Jiao Tong University Spectroscopic Telescope(JUST)is a 4.4-meter f/6.0 segmented-mirror telescope dedicated to spectroscopic observations.The JUST primary mirror is composed of 18 hexagonal segments,each with a di...The Jiao Tong University Spectroscopic Telescope(JUST)is a 4.4-meter f/6.0 segmented-mirror telescope dedicated to spectroscopic observations.The JUST primary mirror is composed of 18 hexagonal segments,each with a diameter of 1.1 m.JUST provides two Nasmyth platforms for placing science instruments.One Nasmyth focus fits a field of view of 10′and the other has an extended field of view of 1.2°with correction optics.A tertiary mirror is used to switch between the two Nasmyth foci.JUST will be installed at a site at Lenghu in Qinghai Province,China,and will conduct spectroscopic observations with three types of instruments to explore the dark universe,trace the dynamic universe,and search for exoplanets:(1)a multi-fiber(2000 fibers)medium-resolution spectrometer(R=4000-5000)to spectroscopically map galaxies and large-scale structure;(2)an integral field unit(IFU)array of 500 optical fibers and/or a long-slit spectrograph dedicated to fast follow-ups of transient sources for multi-messenger astronomy;(3)a high-resolution spectrometer(R~100000)designed to identify Jupiter analogs and Earth-like planets,with the capability to characterize the atmospheres of hot exoplanets.展开更多
Droplet transport still faces numerous challenges,such as a limited transport distance,large volume loss,and liquid contamination.Inspired by the principle of‘synergistic biomimetics’,we propose a design for a platf...Droplet transport still faces numerous challenges,such as a limited transport distance,large volume loss,and liquid contamination.Inspired by the principle of‘synergistic biomimetics’,we propose a design for a platform that enables droplets to be self-propelled.The orchid leaf-like three-dimensional driving structure provides driving forces for the liquid droplets,whereas the lotus leaf-like superhydrophobic surface prevents liquid adhesion,and the bamboo-like nodes enable long-distance transport.During droplet transport,no external energy input is required,no fluid adhesion or residue is induced,and no contamination or mass loss of the fluid is caused.We explore the influence of various types and parameters of wedge structures on droplet transportation,the deceleration of droplet speed at nodal points,and the distribution of internal pressure.The results indicate that the transport platform exhibits insensitivity to pH value and temperature.It allows droplets to be transported with varying curvatures in a spatial environment,making it applicable in tasks like target collection,as well as load,fused,anti-gravity,and long-distance transport.The maximum droplet transport speed reached(58±5)mm·s^(−1),whereas the transport distance extended to(136±4)mm.The developed platform holds significant application prospects in the fields of biomedicine and chemistry,such as high-throughput screening of drugs,genomic bioanalysis,microfluidic chip technology for drug delivery,and analysis of biological samples.展开更多
基金supported by the Research Center for Aging Career and Industrial Development,Sichuan Key Research Base of Social Sciences[Grant No.XJLL2022009].
文摘Global population aging trends are intensifying,presenting multifaceted economic and social challenges for countries worldwide.As the world’s largest developing country,China has entered a phase of extreme demographic aging,posing significant questions about its impact on the ongoing upgrading of industrial structures.How does this demographic shift influence the upgrading of industrial structures,and does technological innovation mitigate or exacerbate this impact?The empirical results indicate that population aging impedes upgrading the industrial structure,while technological innovation positively affects the relationship between the two.Moreover,using technological innovation as a threshold variable,the impact of population aging on industrial structure upgrading evolves in a“gradient”manner from“impediment”to“insignificant”to“promotion”as the technological innovation levels increase.These findings offer practical guidance for tailoring industrial policies to different stages of technological advancement.
基金This work was financially supported by the Natural Science Foundation of Fujian Province (No. K03007)
文摘Standard mica was used to correct the X-ray powder diffraction instrument error and mathematic methods were employed to find the correction equation. By analyzing mullite sample and comparing the corrected and uncorrected analysis results we found the former is obviously more reasonable. So the conclusion is that the X-ray powder diffraction instrument error greatly affects the crystalline structure analysis, and the above method is convenient and effective for the correction of instrument error.
基金supported by National Natural Science Foundation of China(Nos.12075046 and 11775042)。
文摘A two-dimensional electromagnetic particle-in-cell simulation model is proposed to study the density evolution and collective stopping of electron beams in background plasmas.We show here the formation of the multi-layer structure of the relativistic electron beam in the plasma due to the different betatron frequency from the beam front to the beam tail.Meanwhile,the nonuniformity of the longitudinal wakefield is the essential reason for the multi-layer structure formation in beam phase space.The influences of beam parameters(beam radius and transverse density profile)on the formation of the multi-layer structure and collective stopping in background plasmas are also considered.
基金the National Natural Science Foundation of China(No:21703285)。
文摘Various nanostructured architectures have been demonstrated to be effective to address the issues of high capacity Si anodes. However, the scale-up of these nano-Si materials is still a critical obstacle for commercialization. Herein, we use industrial ferrosilicon as low-cost Si source and introduce a facile and scalable method to fabricate a micrometer-sized ferrosilicon/C composite anode, in which ferrosilicon microparticles are wrapped with multi-layered carbon nanosheets. The multi-layered carbon nanosheets could effectively buffer the volume variation of Si as well as create an abundant and reliable conductivity framework, ensuring fast transport of electrons. As a result, the micrometer-sized ferrosilicon/C anode achieves a stable cycling with 805.9 m Ah g-1 over 200 cycles at 500 mA g-1 and a good rate capability of455.6 mAh g-1 at 10 A g-1. Therefore, our approach based on ferrosilicon provides a new opportunity in fabricating cost-effective, pollution-free, and large-scale Si electrode materials for high energy lithium-ion batteries.
基金Guangdong Provincial University Key Special Project Fund(No.2020zdzx2032)National Entrepreneurship Practice Fund(No.202013684009s)。
文摘Glass fibre-reinforced(GFR)structure is extensively used in radome,spoiler and some other equipment.In engineering practice,due to the influence of wear,aging,impact,chemical corrosion of surface structure and other factors,the internal structure of this kind of structure gradually evolves into a defect state and expands to form defects such as bubbles,scratches,shorts,cracks,cavitation erosion,stains and other defects.These defects have posed a serious threat to the quality and performance of GFR structure.From the propagation process of GFR structure defects,its duration is random and may be very short.Therefore,designing a scientific micro defect intelligent detection system for GFR structure to enhance the maintainability of GFR structure will not only help to reduce emergencies,but also have positive theoretical significance and application value to ensure safe production and operation.Firstly,the defect detection mechanism of GFR structure is discussed,and the defect detection principle and defect area identification method are analyzed.Secondly,the processing process of defect edge signal is discussed,a classifier based on MLP is established,and the algorithm of the classifier is designed.Finally,the effectiveness of this method is proved by real-time monitoring and defect diagnosis of a typical GFR structure.The experimental results show that this method improves the efficiency of defect detection and has high defect feature recognition accuracy,which provides a new idea for the on-line detection of GFR structure defects.
文摘Based on the overall consideration of individual behaviors of Ricardian and non-Ricardian households, this paper develops a New Keynesian dynamic stochastic general equilibrium(DSGE) model to form a relatively systematic research framework for analyzing the economic effects of structural fiscal instruments. Our study findsthat great differences exist in the macroeconomic effects of different fiscal instruments, suggesting that the government should prudently select these fiscal instruments in fiscal macro-control. The simulating results of fiscal shocks show that the effect of tax cut is superior to the effect of increased spending. In the context of slowing economic growth and less potent stimulation policy, the government should transform its previous regulatory approach of fiscal policy and shift from hefty spending stimulus policy to structural tax cuts. This paper believes that China should step up the implementation of public-private partnership, increase its spending on social security, healthcare, pension and public services and facilitate the transition toward a service-based government; and that tax policy should focus on structural tax cuts on consumption to promote the transition of demand structure toward consumption-driven.
基金Project(50071014) supported by the National Natural Science Foundation of China
文摘Stress distribution in the gradient multi-layered surface under a sliding contact was investigated using finite element method(FEM). The main structure parameters of layered surface discussed are total layer thickness,layer number and elastic modulus ratio of layer to the substrate. A model of multi-layered surface contact with rough slider was studied. The effect of the surface structure parameters on the elastic-plastic deformation was analyzed.
基金Project supported by the National High Technology Research and Development Program of China (Grant No 2004AA31G200)Beijing Jiaotong University Foundation, China (Grant No 2005SM002)
文摘A simple model for approximate bandgap structure calculation of all-solid photonic bandgap fibre based on an array of rings is proposed. In this model calculated are only the potential modes of a unit cell, which is a high-index ring in the low-index background for this fibre, rather than the whole cladding periodic structure based on Bloch's theorem to find the bandgap. Its accuracy is proved by comparing its results with the results obtained by using the accurate full-vector plane-wave method. High speed in computation is its great advantage over the other exact methods, because it only needs to find the roots of one-dimensional analytical expressions. And the results of this model, mode plots, offer an ideal environment to explore the basic properties of photonie bandgap clearly.
文摘In/Pd-doped SnO2 is synthesized via a sol-gel method and coated on a silicon substrate with Pt electrodes to fabricate a micro-structure sensor. The sensor can be used to detect CO down to l ppm (the sensitivity is about 3), and the response time and recovery time are about 5 and 15 s, respectively. Excellent selectivity is also found based on our sensor. These results demonstrate a promising approach to fabricate high-performance CO sensors with high sensitivity and quick response.
基金funded by the Science and Technology Research and Development Program of the China Petroleum & Chemical Corporation(No.P06088)the Nonprofit Special Research Program(No.200811015)the Land Resource Survey Project of the Ministry of Land and Natural Resources,China(No.1212010782003)
文摘Detachment structures occur widely in the crust, and it is the commonest and most important deformation type developed in the region between orogenic belts and basins. The 'comb-like' and 'toughlike' fold belts in eastern Sichuan are caused by multi-layer detachment. The duplex structure is the most important deformation style in the region, exhibiting different characteristics from typical detachment structures. Different deformation styles, scales, and shortenings resulting from independent deformations of various detachment systems would lead to the phenomenon whereby most of the topographical heights in the region do not correspond to the structural heights in depth. Based on systematic structural analysis and combined with practical oil/gas prospecting, four types of structural traps are described from eastern Sichuan Province, which are: detachment and thrust trap; detachment folding trap; fault-flat blocking trap; and detachment layer trap. Meticulous studies on the deformation and distribution of detachment layers in the eastern Sichuan Province will contribute to oil/gas prospecting and selection of potential regions of marine-origin oil/gas prospecting in South China.
基金Supported by the National Natural Science Foundation of China(61305102)the Foundation for Outstanding Young Scholars of Jilin Province(20170520106JH)
文摘In order to improve the flexibility of the surgical instruments, a wire-driven wrist-like structure is proposed in this paper. The instrument has three degrees of freedom (DOFs) of rotation, yaw, opening and closing. Furthermore, we also acknowledge no coupling motion for each DOF. Moreover, the self-locking motion contributes to sustaining joint posture under external force. A static analysis for the end effector was conducted using the ANSYS software. At the end of this paper, a series of experiments for the prototype was performed. The results revealed that for the same surgical task, the proposed instrument had higher flexibility and the completion time of the operation tasks was obviously less than that of the traditional instrument. The results of the self-locking and operating force test showed that the surgical instruments perform well in maintaining joint posture under the force of 8.2N. The proposed surgical instrument meets the requirements of minimally invasive surgery (MIS).
基金This study was funded by the National Natural Science Foundation of China(Grant Nos:51278188,50808077,and 51778224)Project of Young Core Instructor Growth from Hunan Province of Chinathe financial support from the China Scholarship Council(CSC)under No.201606130003
文摘A better understanding of the mechanical behavior of the multilayered structure under extermal loading is the most important item for the structural design and the risk asssment.The objective of this study are to propose and develop an analytical solution for the mechanical behaviors of multi-layered structure generated by axisy mmetric loading,and to investigate the impact of anisotropic layers and interlayer conditions on the multi-layered structure.To reach these objectives,first,according to the goveming equations,the analytical solution for a single layer was formulated by adopting the spatial Hankel transform.Then the global matrix technique is applied to achieve the analytical solution of multi-layered structure in Hankel domain.The sliding and bonded interlayer conditions were considered in this process.Finally,the numerical inversion of integral transform was used to solve the components of displacement and stress in real domain.Gauss-Lcgendre quadrature is a key scheme in the numerical inversion process.Moreover,following by the verification of the proposed analytical solution,one typical three-layered flexible pavement was applied as the computing carrier of numerical analysis for the multi-layered structure.The results have shown that the anisotropic layers and the interlayer conditions significantly affect the mechanical behaviors of the proposed structure.
文摘We prepare the gallium oxide (β-Ga2O3) nanomaterials from gallium and oxygen by thermal evaporation in the argon atmosphere and research their oxygen sensing under UV illumination with different oxygen pressures. X-ray diffraction reveals that the synthesized product is monoclinic gallium oxide, it is further confirmed by electron diffraction of transmission electron microscope, and its morphology through the observation using scanning electron microscope reveals thatβ-Ga2O3 nanobelts with a breadth less than lOOnm and length of severai micrometers are synthesized under low oxygen pressure, while the nano/microbelts are synthesized under high oxygen pressure. Room-temperature oxygen sensing is tested under at 254 nm illumination and it is found that the current decreases quickly first and then slowly with oxygen pressure from low to high.
基金This work is supported by“the Fundamental Research Funds for the Central Universities”,111 project No.B20019Shanghai Natural Science Foundation,grant No.19ZR1466800.
文摘The Jiao Tong University Spectroscopic Telescope(JUST)is a 4.4-meter f/6.0 segmented-mirror telescope dedicated to spectroscopic observations.The JUST primary mirror is composed of 18 hexagonal segments,each with a diameter of 1.1 m.JUST provides two Nasmyth platforms for placing science instruments.One Nasmyth focus fits a field of view of 10′and the other has an extended field of view of 1.2°with correction optics.A tertiary mirror is used to switch between the two Nasmyth foci.JUST will be installed at a site at Lenghu in Qinghai Province,China,and will conduct spectroscopic observations with three types of instruments to explore the dark universe,trace the dynamic universe,and search for exoplanets:(1)a multi-fiber(2000 fibers)medium-resolution spectrometer(R=4000-5000)to spectroscopically map galaxies and large-scale structure;(2)an integral field unit(IFU)array of 500 optical fibers and/or a long-slit spectrograph dedicated to fast follow-ups of transient sources for multi-messenger astronomy;(3)a high-resolution spectrometer(R~100000)designed to identify Jupiter analogs and Earth-like planets,with the capability to characterize the atmospheres of hot exoplanets.
基金supported by the National Natural Science Foundation of China(NSFC,Grant No.52275420)the National Key R&D Program of China(2022YFB3403304)the Natural Science Foundation of Hunan Province[Grant No.2022JJ30136].
文摘Droplet transport still faces numerous challenges,such as a limited transport distance,large volume loss,and liquid contamination.Inspired by the principle of‘synergistic biomimetics’,we propose a design for a platform that enables droplets to be self-propelled.The orchid leaf-like three-dimensional driving structure provides driving forces for the liquid droplets,whereas the lotus leaf-like superhydrophobic surface prevents liquid adhesion,and the bamboo-like nodes enable long-distance transport.During droplet transport,no external energy input is required,no fluid adhesion or residue is induced,and no contamination or mass loss of the fluid is caused.We explore the influence of various types and parameters of wedge structures on droplet transportation,the deceleration of droplet speed at nodal points,and the distribution of internal pressure.The results indicate that the transport platform exhibits insensitivity to pH value and temperature.It allows droplets to be transported with varying curvatures in a spatial environment,making it applicable in tasks like target collection,as well as load,fused,anti-gravity,and long-distance transport.The maximum droplet transport speed reached(58±5)mm·s^(−1),whereas the transport distance extended to(136±4)mm.The developed platform holds significant application prospects in the fields of biomedicine and chemistry,such as high-throughput screening of drugs,genomic bioanalysis,microfluidic chip technology for drug delivery,and analysis of biological samples.