期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Iterative identification of output error model for industrial processes with time delay subject to colored noise 被引量:1
1
作者 董世健 刘涛 +1 位作者 李明忠 曹毅 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第12期2005-2012,共8页
To deal with colored noise and unexpected load disturbance in identification of industrial processes with time delay, a bias-eliminated iterative least-squares(ILS) identification method is proposed in this paper to e... To deal with colored noise and unexpected load disturbance in identification of industrial processes with time delay, a bias-eliminated iterative least-squares(ILS) identification method is proposed in this paper to estimate the output error model parameters and time delay simultaneously. An extended observation vector is constructed to establish an ILS identification algorithm. Moreover, a variable forgetting factor is introduced to enhance the convergence rate of parameter estimation. For consistent estimation, an instrumental variable method is given to deal with the colored noise. The convergence and upper bound error of parameter estimation are analyzed. Two illustrative examples are used to show the effectiveness and merits of the proposed method. 展开更多
关键词 Time delay system Output error model Recursive least-squares instrumental variable variable forgetting factor
下载PDF
Closed-loop identification of systems using hybrid Box–Jenkins structure and its application to PID tuning 被引量:1
2
作者 李全善 李大字 曹柳林 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第12期1997-2004,共8页
The paper describes a closed-loop system identification procedure for hybrid continuous-time Box–Jenkins models and demonstrates how it can be used for IMC based PID controller tuning. An instrumental variable algori... The paper describes a closed-loop system identification procedure for hybrid continuous-time Box–Jenkins models and demonstrates how it can be used for IMC based PID controller tuning. An instrumental variable algorithm is used to identify hybrid continuous-time transfer function models of the Box–Jenkins form from discretetime prefiltered data, where the process model is a continuous-time transfer function, while the noise is represented as a discrete-time ARMA process. A novel penalized maximum-likelihood approach is used for estimating the discrete-time ARMA process and a circulatory noise elimination identification method is employed to estimate process model. The input–output data of a process are affected by additive circulatory noise in a closedloop. The noise-free input–output data of the process are obtained using the proposed method by removing these circulatory noise components. The process model can be achieved by using instrumental variable estimation method with prefiltered noise-free input–output data. The performance of the proposed hybrid parameter estimation scheme is evaluated by the Monte Carlo simulation analysis. Simulation results illustrate the efficacy of the proposed procedure. The methodology has been successfully applied in tuning of IMC based flow controller and a practical application demonstrates the applicability of the algorithm. 展开更多
关键词 Hybrid Box–Jenkins models ARMA models instrumental variable Closed-loop identification PID tuning
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部