期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
A composite insulation structure for silicon-based planar neuroprobes 被引量:2
1
作者 ZHAO Hui PEI WeiHua +4 位作者 CHEN SanYuan GUI Qiang TANG RongYu GUO Kai CHEN HongDa 《Science China(Technological Sciences)》 SCIE EI CAS 2012年第9期2436-2440,共5页
Silicon-based planar neuroprobes are composed of silicon substrate,conducting layer,and insulation layers of SiO 2 or SiN membrane.The insulation layer is very important because it affects many key parameters of neupr... Silicon-based planar neuroprobes are composed of silicon substrate,conducting layer,and insulation layers of SiO 2 or SiN membrane.The insulation layer is very important because it affects many key parameters of neuprobes,like impedance,SNR(signal noise ratio),reliability,etc.Monolayer membrane of SiO 2 or SiN are not good choices for insulation layer,since defects and residual stress in these layers can induce bad passivation.In this paper a composite insulation structure is studied,with thermal SiO 2 as the lower insulation layer and with multilayer membrane composed of PECVD SiO 2 and SiN as the upper insulation layer.This structure not only solves the problem of residual stress but also ensures a good probe passivation.So it's a good choice for insulation layer of neuroprobes. 展开更多
关键词 SILICON-BASED neuroprobes insulation structure multilayer membrane stress DURABILITY PASSIVATION
原文传递
A layered multifunctional framework based on polyacrylonitrile and MOF derivatives for stable lithium metal anode
2
作者 Fanfan Liu Peng Zuo +5 位作者 Jing Li Pengcheng Shi Yu Shao Linwei Chen Yihong Tan Tao Ma 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期282-288,I0007,共8页
Composite Li metal anodes based on three-dimensional(3D) porous frameworks have been considered as an effective material for achieving stable Li metal batteries with high energy density.However,uneven Li deposition be... Composite Li metal anodes based on three-dimensional(3D) porous frameworks have been considered as an effective material for achieving stable Li metal batteries with high energy density.However,uneven Li deposition behavior still occurs at the top of 3D frameworks owing to the local accumulation of Li ions.To promote uniform Li deposition without top dendrite growth,herein,a layered multifunctional framework based on oxidation-treated polyacrylonitrile(OPAN) and metal-organic framework(MOF) derivatives was proposed for rationally regulating the distribution of Li ions flux,nucleation sites,and electrical conductivity.Profiting from these merits,the OPAN/carbon nano fiber-MOF(CMOF) composite framework demonstrated a reversible Li plating/stripping behavior for 500 cycles with a stable Coulombic efficiency of around 99.0% at the current density of 2 mA/cm~2.Besides,such a Li composite anode exhibited a superior cycle lifespan of over 1300 h under a low polarized voltage of 18 mV in symmetrical cells.When the Li composite anode was paired with LiFePO_(4)(LFP) cathode,the obtained full cell exhibited a stable cycling over 500 cycles.Moreover,the COMSOL Multiphysics simulation was conducted to reveal the effects on homogeneous Li ions distribution derived from the above-mentioned OPAN/CMOF framework and electrical insulation/conduction design.These electrochemical and simulated results shed light on the difficulties of designing stable and safe Li metal anode via optimizing the 3D frameworks. 展开更多
关键词 Lithium metal anode Layered multifunctional framework Ions flux redistribution Electrical insulation/conduction structure Uniform Li deposition
下载PDF
High-stability temperature control and frequency-domain analysis of sandwich-like insulation design based on phase change materials for satellite thermal management
3
作者 WANG ZiHan HE ChenBo +1 位作者 HU Yang TANG GuiHua 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2024年第8期2387-2404,共18页
High-stability thermal management is critical for the measurements of high sensitivity for temperature, but also challenging because any small thermal disturbances could lead to unacceptable temperature fluctuations. ... High-stability thermal management is critical for the measurements of high sensitivity for temperature, but also challenging because any small thermal disturbances could lead to unacceptable temperature fluctuations. The present work delivers a design for passive temperature control, customized for a component in the satellites for gravitational wave detection. A novel sandwichlike structure is proposed with the configurations of proper materials, consisting of a layer of insulation material and two layers of nanocomposite phase change materials, bringing an integration of heat insulation and absorption/storage. Its performance is examined using an improved thermal network model and the revised transfer function method(TFM). The basic results of the two methods are validated by present COMSOL simulations and available numerical and experimental data in the literature. An effective reduction of temperature fluctuation is achieved to the scale of 0.1 K, even under two thermal disturbances from different directions: a radiative heat flux of 20 W m~(-2)(inside) and a temperature fluctuation of about 20 K(outside). Moreover,the TFM is employed to analyze the effects of the frequency of thermal disturbance: excellent damping performance is obtained for over 3.2 mHz and the underlying mechanism is discussed. Overall, the present design is expected to be combined with active temperature control to explore more possible ways for temperature control with higher stability. 展开更多
关键词 temperature control sandwich insulation structure phase change material thermal network model transfer function method
原文传递
The influence of the Dresselhaus spin-orbit coupling on the tunnelling magnetoresistance in ferromagnet/ insulator /semiconductor/ insulator /ferromagnet tunnel junctions
4
作者 王晓华 安兴涛 刘建军 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第2期749-756,共8页
This paper investigates the effect of Dresselhaus spin orbit coupling on the spin-transport properties of ferromagnet/insulator/semiconductor/insulator/ferromagnet double-barrier structures. The influence of the thick... This paper investigates the effect of Dresselhaus spin orbit coupling on the spin-transport properties of ferromagnet/insulator/semiconductor/insulator/ferromagnet double-barrier structures. The influence of the thickness of the insulator between the ferromagnet and the semiconductor on the polarization is also considered. The obtained results indicate that (i) the polarization can be enhanced by reducing the insulator layers at zero temperature, and (ii) the tunnelling magnetoresistance inversion can be illustrated by the influence of the Dresselhaus spin-orbit coupling effect in the double-barrier structure. Due to the Dresselhaus spin-orbit coupling effect, the tunnelling magnetoresistance inversion occurs when the energy of a localized state in the barrier matches the Fermi energy EF of the ferromagnetic electrodes. 展开更多
关键词 Dresselhaus spin-orbit coupling ferromagnet/insulator/semiconductor/insulator/ferromagnet double-barrier structures transfer-matrix method
下载PDF
In situ electronic structural study of VO_2 thin film across the metal–insulator transition
5
作者 伊明江.买买提 阿布都艾则孜.阿布来提 +3 位作者 吴蕊 王嘉鸥 钱海杰 奎热西.依布拉欣 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第12期410-415,共6页
The in situ valence band photoemission spectrum (PES) and X-ray absorption spectrum (XAS) at V LⅡ-LⅢ edges of the VO2 thin film, which is prepared by pulsed laser deposition, are measured across the metal–insul... The in situ valence band photoemission spectrum (PES) and X-ray absorption spectrum (XAS) at V LⅡ-LⅢ edges of the VO2 thin film, which is prepared by pulsed laser deposition, are measured across the metal–insulator transition (MIT) temperature (TMIT=67 ℃). The spectra show evidence for changes in the electronic structure depending on temperature. Across the TMIT, pure V 3d characteristic d‖ and O 2p-V 3d hybridization characteristic πpd, σpd bands vary in binding energy position and density of state distributions. The XAS reveals a temperature-dependent reversible energy shift at the V LⅢ-edge. The PES and XAS results imply a synergetic energy position shift of occupied valence bands and unoccupied conduction band states across the phase transition. A joint inspection of the PES and XAS results shows that the MIT is not a one-step process, instead it is a process in which a semiconductor phase appears as an intermediate state. The final metallic phase from insulating state is reached through insulator–semiconductor, semiconductor–metal processes, and vice versa. The conventional MIT at around the TMIT=67 ℃ is actually a semiconductor–insulator transformation point. 展开更多
关键词 vanadium dioxide metal–insulator transition electronic structure photoemission spectroscopy
下载PDF
MOISTURE AND FLEXURAL BEHAVIOUR OF HEMP MAT FOAM STRUCTURAL INSULATED PANEL SPECIMENS
6
作者 Kris J.Dick Farhoud Delijani Andy Yuen 《Journal of Green Building》 2014年第2期87-101,共15页
The use of structural insulated panels(SIPs)for wall and roof assemblies in residential and commercial buildings is a well-known construction technique.SIPs typically use a combination of either expanded polystyrene f... The use of structural insulated panels(SIPs)for wall and roof assemblies in residential and commercial buildings is a well-known construction technique.SIPs typically use a combination of either expanded polystyrene foam(EPS)or polyurethane foam(PUR)as the core material.The covering or skin is predominantly oriented strand board(OSB).The OSB is either bonded to the foam with adhesive in the case of EPS,while polyurethane is used to provide adhesion with PUR SIPs.This paper presents the results of research that investigated the use of industrial hemp mat used as a skin for soy-based polyurethane foam panels.A series of tests were conducted to investigate moisture resistance and flexural behaviour on hemp mat foam panels.Moisture absorption behaviour was evaluated on three specimen types:uncoated,earth plaster and tung oil treated hemp mat.The absorption coefficient Aw was determined for all specimens.The tung oil treated specimens exhibited a water absorption coefficient that was 5.3%of that for untreated hemp mat panel specimens.Flexural tests were conducted on dry specimens with earth-plastered hemp mat,tung oil coated hemp mat,OSB and,untreated hemp mat skins.Tung oil provided resistance to tension failure and increased capacity to withstand considerable deformation without tensile failure in flexural specimens.Compared with pure foam specimens,untreated hemp mat improved flexural performance by 16.3%. 展开更多
关键词 industrial hemp moisture absorption flexural behaviour structural insulated panels
下载PDF
POWER CONSUMPTION COMPARISON OF FIVE BUILDING ENVELOPES IN THE NORTHERN PRAIRIE CLIMATE OF MANITOBA
7
作者 Kris J.Dick Hossein Safavian Grant Rayner 《Journal of Green Building》 2014年第4期147-160,共14页
The energy efficiency of a building depends on building envelope performance.The results presented in this paper are the first of a long-term building envelope research project at the Alternative Village at the Univer... The energy efficiency of a building depends on building envelope performance.The results presented in this paper are the first of a long-term building envelope research project at the Alternative Village at the University of Manitoba in Winnipeg,Manitoba,Canada.Five test buildings were constructed using the following systems:two wood frames with fiberglass batt insulation and dense pack cellulose,one polyurethane structural insulated panels(PUR SIP),and two with the Stay in place PVC concrete form building system using 102mm and 204mm of concrete externally insulated with 102mm of expanded polystyrene foam.All of the buildings had a common foundation and roof system with a footprint of 23.8 m2.Blower door tests were conducted to determine air tightness.Each structure was heated with an electrical resistance heater and maintained at a constant internal temperature.The thermal gradient through the wall and power consumption were monitored.The study period discussed in this report represents the main heating season from October 2011 to April 2012 consisting of 209 days.Based on the power consumption,the PUR SIP consumed the least at 2498 kWh,while the 204 mm Stay in place PVC concrete form building used the most at 2898 kWh for the same time period.The thermal gradient through the cross section of the wood frame structures was compared through the cavity insulation and at the stud.It was found that the cellulose building provided better thermal resistance along the stud when compared to the fiberglass batt insulation. 展开更多
关键词 fiberglass insulation cellulose insulation polyurethane structural insulated panels power consumption mass walls
下载PDF
Time-domain Finite Element Method for Transient Electric Field and Transient Charge Density on Dielectric Interface 被引量:10
8
作者 Teng Wen Xiang Cui +2 位作者 Xuebao Li Hao Ma Zhibin Zhao 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2022年第1期143-154,共12页
This paper is devoted to solving the transient electric field and transient charge density on the dielectric interface under the electroquasistatic(EQS)field conditions with high accuracy.The proposed method is suitab... This paper is devoted to solving the transient electric field and transient charge density on the dielectric interface under the electroquasistatic(EQS)field conditions with high accuracy.The proposed method is suitable for both 2-D and 3-D applications.Firstly,the governing equations represented by scalar electric potential are discretized by the nodal finite element method(FEM)in space and the finite difference method in time.Secondly,the transient constrained electric field equation on the boundary(TCEFEB)is derived to calculate the normal component of the transient electric field intensities on the Dirichlet boundary and dielectric interface as well as the transient charge density on the dielectric interface.Finally,a 2-D numerical example is employed to demonstrate the validity of the proposed method.Furthermore,the comparisons of the numerical accuracy of the proposed method in this paper with the existing FEMs for electric field intensity and charge density on the dielectric interface are conducted.The results show that the numerical accuracy of the proposed method for calculating the normal component of transient electric field intensities on the Dirichlet boundary and dielectric interface as well as the transient charge density on the dielectric interface is close to that of nodal electric potential and an order of magnitude higher than those of existing FEMs. 展开更多
关键词 Electroquasistatic field composite insulation structure transient constrained electric field equation on the boundary finite element method interface charge TIME-DOMAIN
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部