期刊文献+
共找到1,125篇文章
< 1 2 57 >
每页显示 20 50 100
Data augmentation method for insulators based on Cycle-GAN
1
作者 Run Ye Azzedine Boukerche +3 位作者 Xiao-Song Yu Cheng Zhang Bin Yan Xiao-Jia Zhou 《Journal of Electronic Science and Technology》 EI CAS CSCD 2024年第2期36-47,共12页
Data augmentation is an important task of using existing data to expand data sets.Using generative countermeasure network technology to realize data augmentation has the advantages of high-quality generated samples,si... Data augmentation is an important task of using existing data to expand data sets.Using generative countermeasure network technology to realize data augmentation has the advantages of high-quality generated samples,simple training,and fewer restrictions on the number of generated samples.However,in the field of transmission line insulator images,the freely synthesized samples are prone to produce fuzzy backgrounds and disordered samples of the main insulator features.To solve the above problems,this paper uses the cycle generative adversarial network(Cycle-GAN)used for domain conversion in the generation countermeasure network as the initial framework and uses the self-attention mechanism and channel attention mechanism to assist the conversion to realize the mutual conversion of different insulator samples.The attention module with prior knowledge is used to build the generation countermeasure network,and the generative adversarial network(GAN)model with local controllable generation is built to realize the directional generation of insulator belt defect samples.The experimental results show that the samples obtained by this method are improved in a number of quality indicators,and the quality effect of the samples obtained is excellent,which has a reference value for the data expansion of insulator images. 展开更多
关键词 Data expansion Deep learning Generate confrontation network INSULATOR
下载PDF
A Simple and Effective Surface Defect Detection Method of Power Line Insulators for Difficult Small Objects
2
作者 Xiao Lu Chengling Jiang +2 位作者 Zhoujun Ma Haitao Li Yuexin Liu 《Computers, Materials & Continua》 SCIE EI 2024年第4期373-390,共18页
Insulator defect detection plays a vital role in maintaining the secure operation of power systems.To address the issues of the difficulty of detecting small objects and missing objects due to the small scale,variable... Insulator defect detection plays a vital role in maintaining the secure operation of power systems.To address the issues of the difficulty of detecting small objects and missing objects due to the small scale,variable scale,and fuzzy edge morphology of insulator defects,we construct an insulator dataset with 1600 samples containing flashovers and breakages.Then a simple and effective surface defect detection method of power line insulators for difficult small objects is proposed.Firstly,a high-resolution featuremap is introduced and a small object prediction layer is added so that the model can detect tiny objects.Secondly,a simplified adaptive spatial feature fusion(SASFF)module is introduced to perform cross-scale spatial fusion to improve adaptability to variable multi-scale features.Finally,we propose an enhanced deformable attention mechanism(EDAM)module.By integrating a gating activation function,the model is further inspired to learn a small number of critical sampling points near reference points.And the module can improve the perception of object morphology.The experimental results indicate that concerning the dataset of flashover and breakage defects,this method improves the performance of YOLOv5,YOLOv7,and YOLOv8.In practical application,it can simply and effectively improve the precision of power line insulator defect detection and reduce missing detection for difficult small objects. 展开更多
关键词 Insulator defect detection small object power line deformable attention mechanism
下载PDF
Magneto-optical Kerr and Faraday effects in bilayer antiferromagnetic insulators
3
作者 朱婉情 单文语 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第8期472-478,共7页
Control and detection of antiferromagnetic topological materials are challenging since the total magnetization vanishes.Here we investigate the magneto-optical Kerr and Faraday effects in bilayer antiferromagnetic ins... Control and detection of antiferromagnetic topological materials are challenging since the total magnetization vanishes.Here we investigate the magneto-optical Kerr and Faraday effects in bilayer antiferromagnetic insulator Mn Bi2Te4.We find that by breaking the combined mirror symmetries with either perpendicular electric field or external magnetic moment,Kerr and Faraday effects occur.Under perpendicular electric field,antiferromagnetic topological insulators(AFMTI)show sharp peaks at the interband transition threshold,whereas trivial insulators show small adjacent positive and negative peaks.Gate voltage and Fermi energy can be tuned to reveal the differences between AFMTI and trivial insulators.We find that AFMTI with large antiferromagnetic order can be proposed as a pure magneto-optical rotator due to sizable Kerr(Faraday)angles and vanishing ellipticity.Under external magnetic moment,AFMTI and trivial insulators are significantly different in the magnitude of Kerr and Faraday angles and ellipticity.For the qualitative behaviors,AFMTI shows distinct features of Kerr and Faraday angles when the spin configurations of the system change.These phenomena provide new possibilities to optically detect and manipulate the layered topological antiferromagnets. 展开更多
关键词 magneto-optical Kerr and Faraday effects antiferromagnetic topological insulators bilayer systems
下载PDF
Numerical Simulation of Contamination Accumulation Characteristics of Composite Insulators in Salt Fog Environment
4
作者 Yukun Lv Zeze Chen +2 位作者 Quanzhi Ge Qian Wang Yazhao Zhang 《Energy Engineering》 EI 2023年第2期483-499,共17页
To investigate the fouling characteristics of the composite insulator surface under the salt fog environment,the FXBW-110/120-2 composite insulator was taken as the research object.Based on the field-induced charge me... To investigate the fouling characteristics of the composite insulator surface under the salt fog environment,the FXBW-110/120-2 composite insulator was taken as the research object.Based on the field-induced charge mechanism,the multi-physical field coupling software COMSOL was used to numerically simulate the fouling characteristics,explored the calculation method of ESDD,and demonstrated its rationality.Based on this method,the pollution characteristics of the composite insulator under the pollution fog environment were studied,and the influence of wind speed,droplet size,and voltage type on the pollution characteristics of the composite insulator was analyzed.The results showed that:with the increase in wind speed,the amount of accumulated pollution of insulator increases in the range of droplet size,and the relationship between wind speed and accumulated pollution is approximately linear;at the same wind speed,the amount of accumulated pollution increases with the increase of droplet size under the action of DC voltage;when there is no voltage,the amount of dirt on the upper surface of the insulator is more than that on the lower surface,while it is the opposite under DC voltage. 展开更多
关键词 Composite insulator numerical simulation fouling characteristics equivalent salt deposit density salt fog environment
下载PDF
Mn-doped topological insulators: a review 被引量:1
5
作者 Jing Teng Nan Liu Yongqing Li 《Journal of Semiconductors》 EI CAS CSCD 2019年第8期64-80,共17页
Topological insulators (TIs) host robust edge or surface states protected by time-reversal symmetry (TRS), which makes them prime candidates for applications in spintronic devices. A promising avenue of research for t... Topological insulators (TIs) host robust edge or surface states protected by time-reversal symmetry (TRS), which makes them prime candidates for applications in spintronic devices. A promising avenue of research for the development of functional TI devices has involved doping of three-dimensional (3D) TI thin film and bulk materials with magnetic elements. This approach aims to break the TRS and open a surface band gap near the Dirac point. Utilizing this gapped surface state allows for a wide range of novel physical effects to be observed, paving a way for applications in spintronics and quantum computation. This review focuses on the research of 3D TIs doped with manganese (Mn). We summarize major progress in the study of Mn doped chalcogenide TIs, including Bi2Se3, Bi2Te3, and Bi2(Te,Se)3. The transport properties, in particular the anomalous Hall effect, of the Mn-doped Bi2Se3 are discussed in detail. Finally, we conclude with future prospects and challenges in further studies of Mn doped TIs. 展开更多
关键词 TOPOLOGICAL insulators THIN films electron transport ANOMALOUS HALL effect magnetic DOPING
下载PDF
Fiber Bragg grating monitors for thermal and stress of the composite insulators in transmission lines 被引量:6
6
作者 Heming Deng Wei Cai +3 位作者 You Song Jinsong Liu Christopher Redman Qiandong Zhuang 《Global Energy Interconnection》 2018年第3期382-390,共9页
Running composite insulators are prone to failure due to their harsh surrounding work environment, which directly affects the safe operation of transmission lines. This paper puts forward the method of using fiber Bra... Running composite insulators are prone to failure due to their harsh surrounding work environment, which directly affects the safe operation of transmission lines. This paper puts forward the method of using fiber Bragg grating(FBG) as the monitors to parameters correlated with thermal and stress of the composite insulators in transmission lines at working status. Firstly, monitoring points are found out by the mechanical test on composite insulator samples. Secondly, based on the monitoring theory, this paper introduces the feasibility design frame of the composite insulator with FBG implanted in the rod and the online monitor system. At last, it describes applications of this monitor system in the field of transmission lines. 展开更多
关键词 Thermal monitoring Stress monitoring Composite insulators Transmission lines Fiber Bragg grating monitors
下载PDF
Application of artificial neural network and information theory to detection of insulators
7
作者 李卫东 唐丽艳 +1 位作者 宋家骅 柳焯 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2000年第3期32-36,共5页
Information theory is used to obtain the information gain for each identification feature, and this gain is used as the weight factor for this feature to stress the role of effective feature, and the ART model based o... Information theory is used to obtain the information gain for each identification feature, and this gain is used as the weight factor for this feature to stress the role of effective feature, and the ART model based on artificial neural network theory is then used for identification thereby forming the detection system for poor insulators. Exper iments and calculations show this approach is correct and feasible. 展开更多
关键词 information GAIN artificial NEURAL NETWORK electrical POWER system DETECTION of insulators
下载PDF
Ferromagnetic-insulators-modulated transport properties on the surface of a topological insulator
8
作者 郭俊吉 廖文虎 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第6期484-488,共5页
Transport properties on the surface of a topological insulator (TI) under the modulation of a two-dimensional (2D) ferromagnet/ferromagnet junction are investigated by the method of wave function matching. The sin... Transport properties on the surface of a topological insulator (TI) under the modulation of a two-dimensional (2D) ferromagnet/ferromagnet junction are investigated by the method of wave function matching. The single ferromagnetic barrier modulated transmission probability is expected to be a periodic function of the polarization angle and the planar rotation angle, that decreases with the strength of the magnetic proximity exchange increasing. However, the transmission probability for the double ferromagnetic insulators modulated n-n junction and n-p junction is not a periodic function of polarization angle nor planar rotation angle, owing to the combined effects of the double ferromagnetic insulators and the barrier potential. Since the energy gap between the conduction band and the valence band is narrowed and widened respectively in ranges of 0 ≤ 0 〈π/2 and r/2 〈 0 ≤ π, the transmission probability of the n-n junction first increases rapidly and then decreases slowly with the increase of the magnetic proximity exchange strength. While the transmission probability for the n-p junction demonstrates an opposite trend on the strength of the magnetic proximity exchange because the band gaps contrarily vary. The obtained results may lead to the possible realization of a magnetic/electric switch based on TIs and be useful in further understanding the surface states of TIs. 展开更多
关键词 transport properties surface state Dirac electron topological insulator ferromagnetic insulators
下载PDF
Progress on 2D topological insulators and potential applications in electronic devices
9
作者 侯延辉 张腾 +3 位作者 孙家涛 刘立巍 姚裕贵 王业亮 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第9期36-44,共9页
Two-dimensional topological insulators(2DTIs)have attracted increasing attention during the past few years.New 2DTIs with increasing larger spin-orbit coupling(SOC)gaps have been predicted by theoretical calculations ... Two-dimensional topological insulators(2DTIs)have attracted increasing attention during the past few years.New 2DTIs with increasing larger spin-orbit coupling(SOC)gaps have been predicted by theoretical calculations and some of them have been synthesized experimentally.In this review,the 2DTIs,ranging from single element graphene-like materials to bi-elemental transition metal chalcogenides(TMDs)and to multi-elemental materials,with different thicknesses,structures,and phases,have been summarized and discussed.The topological properties(especially the quantum spin Hall effect and Dirac fermion feature)and potential applications have been summarized.This review also points out the challenge and opportunities for future 2DTI study,especially on the device applications based on the topological properties. 展开更多
关键词 two-dimensional materials topological insulators quantum spin Hall effect dissipation-less devices nanoelectronics
下载PDF
Quantum spin Hall insulators in chemically functionalized As(110)and Sb(110)films
10
作者 王夏烘 李平 +1 位作者 冉召 罗卫东 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第8期487-491,共5页
We propose a new type of quantum spin Hall (QSH) insulator in chemically functionalized As (110) and Sb (110) film. According to first-principles calculations, we find that metallic As (110) and Sb (110) fil... We propose a new type of quantum spin Hall (QSH) insulator in chemically functionalized As (110) and Sb (110) film. According to first-principles calculations, we find that metallic As (110) and Sb (110) films become QSH insulators after being chemically functionalized by hydrogen (H) or halogen (C1 and Br) atoms. The energy gaps of the functionalized films range from 0.121 eV to 0.304 eV, which are sufficiently large for practical applications at room temperature. The energy gaps originate from the spin-orbit coupling (SOC). The energy gap increases linearly with the increase of the SOC strength λ/λ0. The Z2 invariant and the penetration depth of the edge states are also calculated and studied for the functionalized films. 展开更多
关键词 quantum spin Hall insulators density functional theory (DFT) chemical functionalization As (110) and Sb (110) film Z2 topological invariants
下载PDF
Edge Detection of Composite Insulators Hydrophobic Image Based on Improved Canny Operator
11
作者 Kang Yan Fochi Wang +2 位作者 Zhongyuan Zhang Ningcai Li Fangcheng Lv 《Energy and Power Engineering》 2013年第4期593-596,共4页
The detection of hydrophobicity is an important way to evaluate the performance of composite insulators, which is helpful to the safe operation of composite insulators. Image processing technology is used to judge the... The detection of hydrophobicity is an important way to evaluate the performance of composite insulators, which is helpful to the safe operation of composite insulators. Image processing technology is used to judge the hydrophobicity of composite insulators, which makes detection results more accurate and overcomes the subjective drawbacks of traditional detection methods.?As the traditional Canny operator requires manual intervention in selecting the variance of the Gaussian filter and the threshold, the paper presents a method of edge detection based on improved Canny operator. First, the adaptive median filter replaces the Gaussian filter, which can eliminate the impact from the variance of Gaussian filter and remove noise according to the characteristics of the image itself. Then the Ostu threshold method is used to select the best threshold automatically, which makes the edge detection be more continuous and reduce the presence of fake edges. The results show that the operator is applicable to all hydrophobic images. 展开更多
关键词 Composite insulators HYDROPHOBICITY CANNY Operator Edge Detection Adaptive MEDIAN Filter OSTU Threshold Method
下载PDF
Probe Knots and Hopf Insulators with Ultracold Atoms
12
作者 邓东灵 王胜涛 +1 位作者 孙锴 段路明 《Chinese Physics Letters》 SCIE CAS CSCD 2018年第1期36-40,共5页
Knots and links are fascinating and intricate topological objects. Their influence spans from DNA and molecular chemistry to vortices in superfluid helium, defects in liquid crystals and cosmic strings in the early un... Knots and links are fascinating and intricate topological objects. Their influence spans from DNA and molecular chemistry to vortices in superfluid helium, defects in liquid crystals and cosmic strings in the early universe. Here we find that knotted structures also exist in a peculiar class of three-dimensional topological insulators—the Hopf insulators. In particular, we demonstrate that the momentum-space spin textures of Hopf insulators are twisted in a nontrivial way, which implies the presence of various knot and link structures. We further illustrate that the knots and nontrivial spin textures can be probed via standard time-of-flight images in cold atoms as preimage contours of spin orientations in stereographic coordinates. The extracted Hopf invariants, knots, and links are validated to be robust to typical experimental imperfections. Our work establishes the existence of knotted structures in Hopf insulators, which may have potential applications in spintronics and quantum information processing. 展开更多
关键词 In Probe Knots and Hopf insulators with Ultracold Atoms
下载PDF
Observation of Topological Links Associated with Hopf Insulators in a Solid-State Quantum Simulator
13
作者 袁新星 何丽 +8 位作者 王胜涛 邓东灵 王飞 连文倩 王歆 张楚珩 张慧丽 常秀英 段路明 《Chinese Physics Letters》 SCIE CAS CSCD 2017年第6期14-18,共5页
Hopf insulators are intriguing three-dimensional topological insulators characterized by an integer topological invariant. They originate from the mathematical theory of Hopf fibration and epitomize the deep connectio... Hopf insulators are intriguing three-dimensional topological insulators characterized by an integer topological invariant. They originate from the mathematical theory of Hopf fibration and epitomize the deep connection between knot theory and topological phases of matter, which distinguishes them from other classes of topological insulators. Here, we implement a model Hamiltonian for Hopf insulators in a solid-state quantum simulator and report the first experimental observation of their topological properties, including nontrivial topological links associated with the Hopf fibration and the integer-valued topological invariant obtained from a direct tomographic measurement. Our observation of topological links and Hopf fibration in a quantum simulator opens the door to probe rich topological properties of Hopf insulators in experiments. The quantum simulation and probing methods are also applicable to the study of other intricate three-dimensional topological model Hamiltonians. 展开更多
关键词 Observation of Topological Links Associated with Hopf insulators in a Solid-State Quantum Simulator
下载PDF
Fractional Topological Insulators—A Bosonization Approach
14
作者 D. Schmeltzer 《Journal of Modern Physics》 2016年第1期118-128,共11页
A metallic disk with strong spin orbit interaction is investigated. The finite disk geometry introduces a confining potential. Due to the strong spin-orbit interaction and confining potential the metal disk is describ... A metallic disk with strong spin orbit interaction is investigated. The finite disk geometry introduces a confining potential. Due to the strong spin-orbit interaction and confining potential the metal disk is described by an effective one-dimensional model with a harmonic potential. The harmonic potential gives rise to classical turning points. As a result, open boundary conditions must be used. We bosonize the model and obtain chiral Bosons for each spin on the edge of the disk. When the filling fraction is reduced to the electron-electron interactions are studied by using the Jordan Wigner phase for composite fermions which give rise to a Luttinger liquid. When the metallic disk is in the proximity with a superconductor, a Fractional Topological Insulator is obtained. An experimental realization is proposed. We show that by tunning the chemical potential we control the classical turning points for which a Fractional Topological Insulator is realized. 展开更多
关键词 SPIN-ORBIT Chiral Bosons CHAINS Metallic Disk Topological insulators
下载PDF
A Study on Damage Rules on Insulators by Conducting Sols 被引量:3
15
作者 魏继锋 王树山 +2 位作者 李娜 张之暐 马峰 《Journal of Beijing Institute of Technology》 EI CAS 2009年第4期384-387,共4页
Insulating parts are easily subjected to pollution which may cause damage to the electric system. A typical disc insulator is chosen as the target to test its flashover voltage by using an artificial pollution system.... Insulating parts are easily subjected to pollution which may cause damage to the electric system. A typical disc insulator is chosen as the target to test its flashover voltage by using an artificial pollution system. This test system aims at obtaining characteristic parameters of damage for chosen conducting sola to the selected insulator. Experimental results show that thickness and electric conductivity of pollutant layer over insulators are the main parameters in damage evaluation. The flashover voltage decreases with increase of thickness and/or conductivity. These results provide a better basis on further revealing the damaging nature of conducting sol materials. 展开更多
关键词 conducting sol INSULATOR flashover voltage damage rule
下载PDF
Transport properties of topological insulators films and nanowires 被引量:1
16
作者 刘易 马铮 +2 位作者 赵弇斐 Meenakshi Singh 王健 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第6期58-71,共14页
The last several years have witnessed the rapid developments in the study and understanding of topological insulators. In this review, after a brief summary of the history of topological insulators, we focus on the re... The last several years have witnessed the rapid developments in the study and understanding of topological insulators. In this review, after a brief summary of the history of topological insulators, we focus on the recent progress made in transport experiments on topological insulator films and nanowires. Some quantum phenomena, including the weak antilocalization, the Aharonov-Bobm effect, and the Shubnikov-de Haas oscillations, observed in these nanostructures are described. In addition, the electronic transport evidence of the superconducting proximity effect as well as an anomalous resistance enhancement in topological insulator/superconductor hybrid structures is included. 展开更多
关键词 topological insulator surface state transport property MAGNETORESISTANCE superconducting proximity effect
下载PDF
Tunable Weyl fermions and Fermi arcs in magnetized topological crystalline insulators 被引量:1
17
作者 刘军伟 方辰 傅亮 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第4期41-46,共6页
Based on k · p analysis and realistic tight-binding calculations, we find that time-reversal-breaking Weyl semimetals can be realized in magnetically-doped(Mn, Eu, Cr, etc.) Sn_(1-x)Pb_x(Te, Se) class of topologi... Based on k · p analysis and realistic tight-binding calculations, we find that time-reversal-breaking Weyl semimetals can be realized in magnetically-doped(Mn, Eu, Cr, etc.) Sn_(1-x)Pb_x(Te, Se) class of topological crystalline insulators. All the Weyl points are well separated in momentum space and possess nearly the same energy due to high crystalline symmetry.Moreover, both the Weyl points and Fermi arcs are highly tunable by varying Pb/Sn composition, pressure, magnetization,temperature, surface potential, etc., opening up the possibility of manipulating Weyl points and rewiring the Fermi arcs. 展开更多
关键词 TOPOLOGICAL crystalline insulator magnetic WEYL SEMIMETAL magnetically-doped Sn1-x Pbx(Te Se) FERMI arc
下载PDF
A SVM Based Condition Monitoring of Transmission Line Insulators Using PMU for Smart Grid Environment 被引量:3
18
作者 Kailasam Saranya Chinnusamy Muniraj 《Journal of Power and Energy Engineering》 2016年第3期47-60,共14页
A new methodology for the detection and identification of insulator arc faults for the smart grid environment based on phasor angle measurements is presented in this study and the real time phase angle data are collec... A new methodology for the detection and identification of insulator arc faults for the smart grid environment based on phasor angle measurements is presented in this study and the real time phase angle data are collected using Phasor Measurement Units (PMU). Detection of insulator arcing faults is based on feature extraction and frequency component analysis. The proposed methodology pertains to the identification of various stages of insulator arcing faults in transmission lines network based on leakage current, frequency characteristics and synchronous phasor measurements of voltage. The methodology is evaluated for IEEE 14 standard bus system by modeling the PMU and insulator arc faults using MATLAB/Simulink. The classification of insulator arcs is done using Support Vector Machine (SVM) technique to avoid empirical risk. The proposed methodology using phasor angle measurements employing PMU is used for fault detection/classification of insulator arcing which further helps in efficient protection of the system and its stable operation. In addition, the methodology is suitable for wide area condition monitoring of smart grid rather than end to end transmission lines. 展开更多
关键词 Phasor Measurement Units Insulator Arc Feature Extraction Synchronous Phasor Measurements Leakage Current Support Vector Machine
下载PDF
Graphene-like Be_3X_2(X=C,Si, Ge,Sn):A new family of two-dimensional topological insulators
19
作者 宋玲玲 张礼智 +3 位作者 官雨柔 卢建臣 闫翠霞 蔡金明 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第3期317-320,共4页
Using first-principle calculations, we predict a new family of stable two-dimensional(2 D) topological insulators(TI),monolayer Be_3 X_2(X = C,Si, Ge, Sn) with honeycomb Kagome lattice. Based on the configuration of B... Using first-principle calculations, we predict a new family of stable two-dimensional(2 D) topological insulators(TI),monolayer Be_3 X_2(X = C,Si, Ge, Sn) with honeycomb Kagome lattice. Based on the configuration of Be_3 C_2, which has been reported to be a 2 D Dirac material, we construct the other three 2 D materials and confirm their stability according to their chemical bonding properties and phonon-dispersion relationships. Because of their tiny spin-orbit coupling(SOC)gaps, Be_3 C_2 and Be_3 Si_2 are 2 D Dirac materials with high Fermi velocity at the same order of magnitude as that of graphene.For Be3 Ge2 and Be_3 Sn_2,the SOC gaps are 1.5 meV and 11.7 meV, and their topological nontrivial properties are also confirmed by their semi-infinite Dirac edge states. Our findings not only extend the family of 2 D Dirac materials, but also open an avenue to track new 2 DTI. 展开更多
关键词 DIRAC materials TOPOLOGICAL INSULATOR FIRST-PRINCIPLES calculation spin–orbit coupling
下载PDF
Electrostatic field effects on three-dimensional topological insulators
20
作者 杨雯敏 林朝镜 +1 位作者 廖剑 李永庆 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第9期63-71,共9页
Three-dimensional topological insulators are a new class of quantum matter which has interesting connections to nearly all main branches of condensed matter physics. In this article, we briefly review the advances in ... Three-dimensional topological insulators are a new class of quantum matter which has interesting connections to nearly all main branches of condensed matter physics. In this article, we briefly review the advances in the field effect control of chemical potential in three-dimensional topological insulators. It is essential to the observation of many exotic quantum phenomena predicted to emerge from the topological insulators and their hybrid structures with other materials. We also describe various methods for probing the surface state transport. Some challenges in experimental study of electron transport in topological insulators will also be briefly discussed. 展开更多
关键词 topological insulator electron transport weak localization surface and interface
下载PDF
上一页 1 2 57 下一页 到第
使用帮助 返回顶部