Objective To investigate the relationship between polymorphisms of insulin-receptor (INSR) gene and insulin resistance in a population-based study in China. Methods Polymerase Chain Reaction (PCR) was used to the ampl...Objective To investigate the relationship between polymorphisms of insulin-receptor (INSR) gene and insulin resistance in a population-based study in China. Methods Polymerase Chain Reaction (PCR) was used to the amplify Exon 17 of INSR gene and all amplified products were analyzed by direct sequencing. Results Six single-nucleotide polymorphisms (SNPs) were found at the following loci: T to TC at the locus of 10699 (Tyr984), G to GC at the locus of 10731 (Glu994), Deletion G at the locus of 10798 (Asp1017), C to T/TC at the locus of 10923 (His1058), C to CA at the locus of 10954 (Leu1069), and T to TA at the locus of 10961 (Phe1071), which might not change the amino acid sequence. The data were in agreement with the test of Hardy-Weinberg balance (P>0.05). Among the 345 cases, all clinical indices were higher in males than in females except for HDL cholesterol (P<0.05). The proportion of insulin resistance in males (64.4%) was higher than that in females (35.6%, OR=1.83). It implied that the relative risk of developing insulin resistance in males was 1.83 times as high as that in females. The biochemical indices in different loci on Exon 17 showed that the individuals with deletion G on the locus of 10798 had lower TG (P=0.052) and higher HDL (P=0.027) than those without deletion G on the same site. Homa-Index was lower in those with deletion G than in those without deletion G (P>0.05). After sex stratification in analysis, all allele frequencies on the six loci of SNPs of Exon 17 had different distributions between the insulin resistant group and the control group, but P>0.05. Conclusion SNPs of Exon 17 of INSR gene are unlikely to play a direct role in the pathogenesis of human disorders with insulin resistance.展开更多
Objective\ To investigate the role of mutation of insulin receptor (INSR) gene in the development of ischemic stroke. Methods\ The base variations at exon 17 and 20 of INSR gene, by means of PCR SSCP were determine...Objective\ To investigate the role of mutation of insulin receptor (INSR) gene in the development of ischemic stroke. Methods\ The base variations at exon 17 and 20 of INSR gene, by means of PCR SSCP were determined in 68 cases of atherothrombotic cerebral infarction (ACI), 81 cases of lacunar infarction (LI) and 62 healthy controls (HC). Results\ There were 2 alleles of T and C at exon 17 of INSR gene. The prevalence of mutant of T allele in ACI patients was more common than that in the controls. The blood pressure and the parameters of lipid metabolism in the patients with mutant were higher than those in the controls with wild type gene. However, the correlative analysis showed that the polymorphism of INSR gene was not related statistically to the blood pressure. No base variation at exon 20 was found in the study. Conclusion\ The mutation at exon 17 of INSR gene, by promoting the development of atherosclerosis, may participate in the occurrence of ischemic stroke.\;展开更多
目的研究替米沙坦促进大鼠胰岛素分泌作用相关的信号通路。方法(1)分离成年Wistar大鼠胰腺获得胰岛和胰岛细胞,通过胰岛素分泌实验观察药物对胰岛素分泌的影响,通过钙成像实验和全细胞膜片钳技术观察药物对β细胞内Ca^(2+)浓度的变化和...目的研究替米沙坦促进大鼠胰岛素分泌作用相关的信号通路。方法(1)分离成年Wistar大鼠胰腺获得胰岛和胰岛细胞,通过胰岛素分泌实验观察药物对胰岛素分泌的影响,通过钙成像实验和全细胞膜片钳技术观察药物对β细胞内Ca^(2+)浓度的变化和对离子通道的作用。(2)使用过表达电压门控性钾(voltage-gated potassium channel,Kv)通道2.1亚型(Kv2.1)的慢病毒转染中国仓鼠卵巢(Chinese hamster ovary,CHO)细胞构建CHO-Kv2.1细胞系,使用膜片钳技术观察替米沙坦对Kv2.1通道的直接作用。结果缬沙坦和厄贝沙坦无类似替米沙坦的高糖浓度下促胰岛素分泌、升高β细胞内Ca^(2+)浓度和抑制β细胞的Kv通道等作用。过氧化物酶体增殖物激活受体γ(peroxisome proliferator-activated receptorγ,PPARγ)阻断剂GW9662亦未阻断替米沙坦的上述作用。而替米沙坦可以浓度依赖性地抑制CHO-Kv2.1细胞的Kv2.1通道电流。结论替米沙坦的促胰岛素分泌作用可能与血管紧张素Ⅱ-1型(angiotensin II type 1,AT-1)受体和PPARγ无关,但至少与对Kv2.1通道的直接抑制作用有关。展开更多
基金This work was supported by National Nature Science Foundation of China (Grant No. 39970658).
文摘Objective To investigate the relationship between polymorphisms of insulin-receptor (INSR) gene and insulin resistance in a population-based study in China. Methods Polymerase Chain Reaction (PCR) was used to the amplify Exon 17 of INSR gene and all amplified products were analyzed by direct sequencing. Results Six single-nucleotide polymorphisms (SNPs) were found at the following loci: T to TC at the locus of 10699 (Tyr984), G to GC at the locus of 10731 (Glu994), Deletion G at the locus of 10798 (Asp1017), C to T/TC at the locus of 10923 (His1058), C to CA at the locus of 10954 (Leu1069), and T to TA at the locus of 10961 (Phe1071), which might not change the amino acid sequence. The data were in agreement with the test of Hardy-Weinberg balance (P>0.05). Among the 345 cases, all clinical indices were higher in males than in females except for HDL cholesterol (P<0.05). The proportion of insulin resistance in males (64.4%) was higher than that in females (35.6%, OR=1.83). It implied that the relative risk of developing insulin resistance in males was 1.83 times as high as that in females. The biochemical indices in different loci on Exon 17 showed that the individuals with deletion G on the locus of 10798 had lower TG (P=0.052) and higher HDL (P=0.027) than those without deletion G on the same site. Homa-Index was lower in those with deletion G than in those without deletion G (P>0.05). After sex stratification in analysis, all allele frequencies on the six loci of SNPs of Exon 17 had different distributions between the insulin resistant group and the control group, but P>0.05. Conclusion SNPs of Exon 17 of INSR gene are unlikely to play a direct role in the pathogenesis of human disorders with insulin resistance.
文摘Objective\ To investigate the role of mutation of insulin receptor (INSR) gene in the development of ischemic stroke. Methods\ The base variations at exon 17 and 20 of INSR gene, by means of PCR SSCP were determined in 68 cases of atherothrombotic cerebral infarction (ACI), 81 cases of lacunar infarction (LI) and 62 healthy controls (HC). Results\ There were 2 alleles of T and C at exon 17 of INSR gene. The prevalence of mutant of T allele in ACI patients was more common than that in the controls. The blood pressure and the parameters of lipid metabolism in the patients with mutant were higher than those in the controls with wild type gene. However, the correlative analysis showed that the polymorphism of INSR gene was not related statistically to the blood pressure. No base variation at exon 20 was found in the study. Conclusion\ The mutation at exon 17 of INSR gene, by promoting the development of atherosclerosis, may participate in the occurrence of ischemic stroke.\;
文摘目的研究替米沙坦促进大鼠胰岛素分泌作用相关的信号通路。方法(1)分离成年Wistar大鼠胰腺获得胰岛和胰岛细胞,通过胰岛素分泌实验观察药物对胰岛素分泌的影响,通过钙成像实验和全细胞膜片钳技术观察药物对β细胞内Ca^(2+)浓度的变化和对离子通道的作用。(2)使用过表达电压门控性钾(voltage-gated potassium channel,Kv)通道2.1亚型(Kv2.1)的慢病毒转染中国仓鼠卵巢(Chinese hamster ovary,CHO)细胞构建CHO-Kv2.1细胞系,使用膜片钳技术观察替米沙坦对Kv2.1通道的直接作用。结果缬沙坦和厄贝沙坦无类似替米沙坦的高糖浓度下促胰岛素分泌、升高β细胞内Ca^(2+)浓度和抑制β细胞的Kv通道等作用。过氧化物酶体增殖物激活受体γ(peroxisome proliferator-activated receptorγ,PPARγ)阻断剂GW9662亦未阻断替米沙坦的上述作用。而替米沙坦可以浓度依赖性地抑制CHO-Kv2.1细胞的Kv2.1通道电流。结论替米沙坦的促胰岛素分泌作用可能与血管紧张素Ⅱ-1型(angiotensin II type 1,AT-1)受体和PPARγ无关,但至少与对Kv2.1通道的直接抑制作用有关。