期刊文献+
共找到529篇文章
< 1 2 27 >
每页显示 20 50 100
Approximate solution of Volterra-Fredholm integral equations using generalized barycentric rational interpolant
1
作者 Hadis Azin Fakhrodin Mohammadi 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2024年第2期220-238,共19页
It is well-known that interpolation by rational functions results in a more accurate approximation than the polynomials interpolation.However,classical rational interpolation has some deficiencies such as uncontrollab... It is well-known that interpolation by rational functions results in a more accurate approximation than the polynomials interpolation.However,classical rational interpolation has some deficiencies such as uncontrollable poles and low convergence order.In contrast with the classical rational interpolants,the generalized barycentric rational interpolants which depend linearly on the interpolated values,yield infinite smooth approximation with no poles in real numbers.In this paper,a numerical collocation approach,based on the generalized barycentric rational interpolation and Gaussian quadrature formula,was introduced to approximate the solution of Volterra-Fredholm integral equations.Three types of points in the solution domain are used as interpolation nodes.The obtained numerical results confirm that the barycentric rational interpolants are efficient tools for solving Volterra-Fredholm integral equations.Moreover,integral equations with Runge’s function as an exact solution,no oscillation occurrs in the obtained approximate solutions so that the Runge’s phenomenon is avoided. 展开更多
关键词 Barycentric rational interpolation Volterra-Fredholm integral equations Gaussian quadrature Runge's phenomenon
下载PDF
Least square method based on Haar wavelet to solve multi-dimensional stochastic Ito-Volterra integral equations
2
作者 JIANG Guo KE Ting DENG Meng-ting 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2023年第4期591-603,共13页
This paper proposes a method combining blue the Haar wavelet and the least square to solve the multi-dimensional stochastic Ito-Volterra integral equation.This approach is to transform stochastic integral equations in... This paper proposes a method combining blue the Haar wavelet and the least square to solve the multi-dimensional stochastic Ito-Volterra integral equation.This approach is to transform stochastic integral equations into a system of algebraic equations.Meanwhile,the error analysis is proven.Finally,the effectiveness of the approach is verified by two numerical examples. 展开更多
关键词 least squares method Haar wavelet Ito-Volterra integral equations integration operational matrix.
下载PDF
ANTICIPATED BACKWARD STOCHASTIC VOLTERRA INTEGRAL EQUATIONS WITH JUMPS AND APPLICATIONS TO DYNAMIC RISK MEASURES
3
作者 缪亮亮 陈燕红 +1 位作者 肖肖 胡亦钧 《Acta Mathematica Scientia》 SCIE CSCD 2023年第3期1365-1381,共17页
In this paper, we focus on anticipated backward stochastic Volterra integral equations(ABSVIEs) with jumps. We solve the problem of the well-posedness of so-called M-solutions to this class of equation, and analytical... In this paper, we focus on anticipated backward stochastic Volterra integral equations(ABSVIEs) with jumps. We solve the problem of the well-posedness of so-called M-solutions to this class of equation, and analytically derive a comparison theorem for them and for the continuous equilibrium consumption process. These continuous equilibrium consumption processes can be described by the solutions to this class of ABSVIE with jumps.Motivated by this, a class of dynamic risk measures induced by ABSVIEs with jumps are discussed. 展开更多
关键词 anticipated backward stochastic Volterra integral equations comparison theorems dynamic risk measures
下载PDF
Unique Solution of Integral Equations via Intuitionistic Extended Fuzzy b-Metric-Like Spaces
4
作者 Naeem Saleem Khalil Javed +4 位作者 Fahim Uddin Umar Ishtiaq Khalil Ahmed Thabet Abdeljawad Manar A.Alqudah 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第4期109-131,共23页
In this manuscript,our goal is to introduce the notion of intuitionistic extended fuzzy b-metric-like spaces.We establish some fixed point theorems in this setting.Also,we plot some graphs of an example of obtained re... In this manuscript,our goal is to introduce the notion of intuitionistic extended fuzzy b-metric-like spaces.We establish some fixed point theorems in this setting.Also,we plot some graphs of an example of obtained result for better understanding.We use the concepts of continuous triangular norms and continuous triangular conorms in an intuitionistic fuzzy metric-like space.Triangular norms are used to generalize with the probability distribution of triangle inequality in metric space conditions.Triangular conorms are known as dual operations of triangular norms.The obtained results boost the approaches of existing ones in the literature and are supported by some examples and applications. 展开更多
关键词 Fixed point extended fuzzy b-metric like space intuitionistic extended fuzzy b-metric-like space integral equation
下载PDF
Volterra Integral Equations and Some Nonlinear Integral Equations with Variable Limit of Integration as Generalized Moment Problems 被引量:1
5
作者 Maria B. Pintarelli 《Journal of Mathematics and System Science》 2015年第1期32-38,共7页
In this paper we will see that, under certain conditions, the techniques of generalized moment problem will apply to numerically solve an Volterra integral equation of first kind or second kind. Volterra integral equa... In this paper we will see that, under certain conditions, the techniques of generalized moment problem will apply to numerically solve an Volterra integral equation of first kind or second kind. Volterra integral equation is transformed into a one-dimensional generalized moment problem, and shall apply the moment problem techniques to find a numerical approximation of the solution. Specifically you will see that solving the Volterra integral equation of first kind f(t) = {a^t K(t, s)x(s)ds a ≤ t ≤ b or solve the Volterra integral equation of the second kind x(t) =f(t)+{a^t K(t,s)x(s)ds a ≤ t ≤ b is equivalent to solving a generalized moment problem of the form un = {a^b gn(s)x(s)ds n = 0,1,2… This shall apply for to find the solution of an integrodifferential equation of the form x'(t) = f(t) + {a^t K(t,s)x(s)ds for a ≤ t ≤ b and x(a) = a0 Also considering the nonlinear integral equation: f(x)= {fa^x y(x-t)y(t)dt This integral equation is transformed a two-dimensional generalized moment problem. In all cases, we will find an approximated solution and bounds for the error of the estimated solution using the techniques ofgeneralized moment problem. 展开更多
关键词 Generalized moment problems solution stability Volterra integral equations nonlinear integral equations.
下载PDF
Uniqueness of the Fredholm-Stiltjes Linear Integral Equations Solutions of the Third Kind
6
作者 Aizat Toigonbaeva Avyt Asanov +5 位作者 Aisalkyn Kambarova Gumushai Obodoeva Ularbek Moldoyarov Aibek Toktorbaev Aichurok Abdukadyr Kyzy Zhypargul Abdullaeva 《Advances in Linear Algebra & Matrix Theory》 2021年第4期109-116,共8页
Integral equations theoretical parts and applications have been studied and investigated in previous works. In this work, results on investigations of the uniqueness of the Fredholm-Stiltjes linear integral equations ... Integral equations theoretical parts and applications have been studied and investigated in previous works. In this work, results on investigations of the uniqueness of the Fredholm-Stiltjes linear integral equations solutions of the third kind were considered. Volterra integral equations of the first and third kind with smooth kernels were studied, and proof of the existence of a multiparameter family of solutions is described. Additionally, linear Fredholm integral equations of the first kind were investigated, for which Lavrent’ev regularizing operators were constructed. 展开更多
关键词 Solution integral equations UNIQUENESS Fredholm-Stiltjes Linear integral equations Third Kind
下载PDF
BOUNDARY INTEGRAL EQUATIONS FOR THE BENDING PROBLEM OF PLATES ON TWO-PARAMETER FOUNDATION 被引量:2
7
作者 李正良 邓安福 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1992年第7期657-667,共11页
By means of Fourier integral transformation of generalized function, the fundamental solution for the bending problem of plates on two-parameter foundation is derived in this paper, and the fundamental solution is exp... By means of Fourier integral transformation of generalized function, the fundamental solution for the bending problem of plates on two-parameter foundation is derived in this paper, and the fundamental solution is expanded into a uniformly convergent series. On the basis of the above work, two boundary integral equations which are suitable to arbitrary shapes and arbitrary boundary conditions are established by means of the Rayleigh-Green identity. The content of the paper provides the powerful theories for the application of BEM in this problem. 展开更多
关键词 Bending (deformation) Boundary element method Convergence of numerical methods Fourier transforms integral equations
下载PDF
OPTIMIZATION OF ADAPTIVE DIRECT METHOD FOR APPROXIMATE SOLUTION OF INTEGRAL EQUATIONS OF SEVERAL VARIABLES 被引量:2
8
作者 马万 房艮孙 《Acta Mathematica Scientia》 SCIE CSCD 2004年第2期228-234,共7页
This paper determines the exact error order on optimization of adaptive direct methods of approximate solution of the class of Fredholm integral equations of the second kind with kernel belonging to the anisotropic So... This paper determines the exact error order on optimization of adaptive direct methods of approximate solution of the class of Fredholm integral equations of the second kind with kernel belonging to the anisotropic Sobolev classes, and also gives an optimal algorithm. 展开更多
关键词 integral equations direct methods anisotropic sobolev classes
下载PDF
EPSILON-ALGORITHM AND ETA-ALGORITHM OF GENERALIZED INVERSE FUNCTION-VALUED PAD APPROXIMANTS USING FOR SOLUTION OF INTEGRAL EQUATIONS 被引量:1
9
作者 李春景 顾传青 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2003年第2期221-229,共9页
Two efficient recursive algorithms epsilon_algorithm and eta_algorithm are introduced to compute the generalized inverse function_valued Padé approximants. The approximants were used to accelerate the convergenc... Two efficient recursive algorithms epsilon_algorithm and eta_algorithm are introduced to compute the generalized inverse function_valued Padé approximants. The approximants were used to accelerate the convergence of the power series with function_valued coefficients and to estimate characteristic value of the integral equations. Famous Wynn identities of the Pad approximants is also established by means of the connection of two algorithms. 展开更多
关键词 generalized inverse function_valued Padé approximant epsilon_algorithm eta_algorithm integral equations
下载PDF
NOVEL REGULARIZED BOUNDARY INTEGRAL EQUATIONS FOR POTENTIAL PLANE PROBLEMS 被引量:1
10
作者 张耀明 吕和祥 王利民 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2006年第9期1165-1170,共6页
The universal practices have been centralizing on the research of regularization to the direct boundary integal equations (DBIEs). The character is elimination of singularities by using the simple solutions. However... The universal practices have been centralizing on the research of regularization to the direct boundary integal equations (DBIEs). The character is elimination of singularities by using the simple solutions. However, up to now the research of regularization to the first kind integral equations for plane potential problems has never been found in previous literatures. The presentation is mainly devoted to the research on the regularization of the singular boundary integral equations with indirect unknowns. A novel view and idea is presented herein, in which the regularized boundary integral equations with indirect unknowns without including the Cauchy principal value (CPV) and Hadamard-finite-part (HFP) integrals are established for the plane potential problems. With some numerical results, it is shown that the better accuracy and higher efficiency, especially on the boundary, can be achieved by the present system. 展开更多
关键词 potential plane problems boundary integral equations (BIEs) indirect BIEs regularization of BIEs
下载PDF
SOLUTION OF DIFFERENT HOLES SHAPE BORDERS OF FIBRE REINFORCED COMPOSITE PLATES BY INTEGRAL EQUATIONS 被引量:3
11
作者 LI Cheng ZHENG Yanping CHEN Zhongzhong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第5期23-27,共5页
Accurate boundary conditions of composite material plates with different holes are founded to settle boundary condition problems of complex holes by conformal mapping method upon the nonhomogeneous anisotropic elastic... Accurate boundary conditions of composite material plates with different holes are founded to settle boundary condition problems of complex holes by conformal mapping method upon the nonhomogeneous anisotropic elastic and complex function theory. And then the two stress functions required were founded on Cauchy integral by boundary conditions. The final stress distributions of opening structure and the analytical solution on composite material plate with rectangle hole and wing manholes were achieved. The influences on hole-edge stress concentration factors are discussed under different loads and fiber direction cases, and then contrast calculates are carried through FEM. 展开更多
关键词 Fibre reinforced composite Accurate boundary conditions Mapping functions Complex hole shape integral equations
下载PDF
Wavelet Numerical Solutions for Weakly Singular Fredholm Integral Equations of the Second Kind 被引量:1
12
作者 TANG Xinjian PANG Zhicheng +1 位作者 ZHU Tonglin LIU Jian 《Wuhan University Journal of Natural Sciences》 CAS 2007年第3期437-441,共5页
Daubechies interval cally weakly singular Fredholm kind. Utilizing the orthogonality equation is reduced into a linear wavelet is used to solve nurneriintegral equations of the second of the wavelet basis, the integra... Daubechies interval cally weakly singular Fredholm kind. Utilizing the orthogonality equation is reduced into a linear wavelet is used to solve nurneriintegral equations of the second of the wavelet basis, the integral system of equations. The vanishing moments of the wavelet make the wavelet coefficient matrices sparse, while the continuity of the derivative functions of basis overcomes naturally the singular problem of the integral solution. The uniform convergence of the approximate solution by the wavelet method is proved and the error bound is given. Finally, numerical example is presented to show the application of the wavelet method. 展开更多
关键词 weakly singular integral equations interval wavelet sparse matrix
下载PDF
EQUIVALENT BOUNDARY INTEGRAL EQUATIONS WITH INDIRECT UNKNOWNS FOR THIN ELASTIC PLATE BENDING THEORY 被引量:1
13
作者 张耀明 孙焕纯 杨家新 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2000年第11期1246-1255,共10页
Equivalent Boundary Integral Equations (EBIE) with indirect unknowns for thin elastic plate bending theory, which is equivalent to the original boundary value problem, is established rigorously by mathematical techniq... Equivalent Boundary Integral Equations (EBIE) with indirect unknowns for thin elastic plate bending theory, which is equivalent to the original boundary value problem, is established rigorously by mathematical technique of non-analytic continuation and is fully proved by means of the variational principle. The previous three kinds of boundary integral equations with indirect unknowns are discussed thoroughly and it is shown that all previous results are not EBIE. 展开更多
关键词 thin plate bending theory boundary element method equivalent boundary integral equations?
下载PDF
Numerical Solution of Two-Dimensional Nonlinear Stochastic Ito-Volterra Integral Equations by Applying Block Pulse Functions 被引量:2
14
作者 Guo Jiang Xiaoyan Sang +1 位作者 Jieheng Wu Biwen Li 《Advances in Pure Mathematics》 2019年第2期53-66,共14页
This paper investigates the numerical solution of two-dimensional nonlinear stochastic It&#244;-Volterra integral equations based on block pulse functions. The nonlinear stochastic integral equation is transformed... This paper investigates the numerical solution of two-dimensional nonlinear stochastic It&#244;-Volterra integral equations based on block pulse functions. The nonlinear stochastic integral equation is transformed into a set of algebraic equations by operational matrix of block pulse functions. Then, we give error analysis and prove that the rate of convergence of this method is efficient. Lastly, a numerical example is given to confirm the method. 展开更多
关键词 Block Pulse Functions Integration Operational Matrix Stochastic It?-Volterra integral equations
下载PDF
AUTOMATIC AUGMENTED GALERKIN ALGORITHMS FOR FREDHOLM INTEGRAL EQUATIONS OF THE FIRST KIND
15
作者 S.Abbasbandy E.Babolian 《Acta Mathematica Scientia》 SCIE CSCD 1997年第1期69-84,共16页
In recent papers, Babolian & Delves [2] and Belward[3] described a Chebyshev series method for the solution of first kind integral equations. The expansion coefficients of the solution are determined as the soluti... In recent papers, Babolian & Delves [2] and Belward[3] described a Chebyshev series method for the solution of first kind integral equations. The expansion coefficients of the solution are determined as the solution of a mathematical programming problem.The method involves two regularization parameters, Cf and r, but values assigned to these parameters are heuristic in nature. Essah & Delves[7] described an algorithm for setting these parameters automatically, but it has some difficulties. In this paper we describe three iterative algorithms for computing these parameters for singular and non-singular first kind integral equations. We give also error estimates which are cheap to compute. Finally, we give a number of numerical examples showing that these algorithms work well in practice. 展开更多
关键词 Fredholm integral equations Galerkin method Regularization parameters Error estimation Ill-Posed problems Product of chebyshev series
下载PDF
HYPERSINGULAR INTEGRAL EQUATIONS FOR PERIODIC ARRAYS OF PLANAR CRACKS IN A PERIODICALLY-LAYERED ANISOTROPIC ELASTIC SPACE UNDER ANTIPLANE SHEAR STRESS
16
作者 W.T.Ang (Faculty of Engineering, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Malaysia)D.L. Clements(Department of Applied Mathematics, University of Adelaide, SA5005, Australia) 《Acta Mathematica Scientia》 SCIE CSCD 1999年第3期343-355,共13页
Hypersingular integral equations are derived for the problem of determining the antiplane shear stress around periodic arrays of planar cracks in a periodically-layered anisotropic elastic space. The unknown functions... Hypersingular integral equations are derived for the problem of determining the antiplane shear stress around periodic arrays of planar cracks in a periodically-layered anisotropic elastic space. The unknown functions are directly related to the jump in the displacements across opposite crack faces. Once the integral equations are solved, crack parameters of interest, such as the clack tip stress intensity factors, may be readily computed.For some specific examples of the problem, the integral equations are solved numerically by using a collocation technique, in order to compute the relevant stress intensity factors. 展开更多
关键词 Periodically-located cracks periodically-layered anisotropic material antiplane shear stress hypersingulal integral equations
下载PDF
Numerical solutions of two-dimensional nonlinear integral equations via Laguerre Wavelet method with convergence analysis
17
作者 K.Maleknejad M.Soleiman Dehkordi 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2021年第1期83-98,共16页
In this paper,the approximate solutions for two different type of two-dimensional nonlinear integral equations:two-dimensional nonlinear Volterra-Fredholm integral equations and the nonlinear mixed Volterra-Fredholm i... In this paper,the approximate solutions for two different type of two-dimensional nonlinear integral equations:two-dimensional nonlinear Volterra-Fredholm integral equations and the nonlinear mixed Volterra-Fredholm integral equations are obtained using the Laguerre wavelet method.To do this,these two-dimensional nonlinear integral equations are transformed into a system of nonlinear algebraic equations in matrix form.By solving these systems,unknown coefficients are obtained.Also,some theorems are proved for convergence analysis.Some numerical examples are presented and results are compared with the analytical solution to demonstrate the validity and applicability of the proposed method. 展开更多
关键词 he two-dimensional nonlinear integral equations the nonlinear mixed Volterra-Fredholm inte-gral equations two-dimensional Laguerre wavelet Orthogonal polynomial convergence analysis the Darboux problem.
下载PDF
ON DIRECT METHOD OF SOLUTION FOR A CLASS OF SINGULAR INTEGRAL EQUATIONS
18
作者 杜志华 杜金元 《Acta Mathematica Scientia》 SCIE CSCD 2007年第2期301-307,共7页
In this article, by introducing characteristic singular integral operator and associate singular integral equations (SIEs), the authors discuss the direct method of solution for a class of singular integral equation... In this article, by introducing characteristic singular integral operator and associate singular integral equations (SIEs), the authors discuss the direct method of solution for a class of singular integral equations with certain analytic inputs. They obtain both the conditions of solvability and the solutions in closed form. It is noteworthy that the method is different from the classical one that is due to Lu. 展开更多
关键词 Direct method of solution integral operator associate conditions of solvability characteristic singular singular integral equations
下载PDF
GLOBAL SOLUTIONS OF SYSTEMS OF NONLINEAR IMPULSIVE VOLTERRA INTEGRAL EQUATIONS IN BANACH SPACES
19
作者 陈芳启 陈予恕 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2001年第6期619-629,共11页
The existence of solutions for systems of nonlinear impulsive Volterra integral equations on the infinite interval R+ with an infinite number of moments of impulse effect in Banach spaces is studied. Some existence th... The existence of solutions for systems of nonlinear impulsive Volterra integral equations on the infinite interval R+ with an infinite number of moments of impulse effect in Banach spaces is studied. Some existence theorems of extremal solutions are obtained, which extend the related results for this class of equations on a finite interval with a finite. number of moments of impulse effect. The results are demonstrated by means of an example of an infinite systems for impulsive integral equations. 展开更多
关键词 system of impulsive Volterra integral equations Tonelli's method extremal solutions cone and partial ordering
下载PDF
STRESS RATE INTEGRAL EQUATIONS OF ELASTOPLASTICITY
20
作者 陈海波 王有成 吕品 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 1996年第1期55-64,共10页
The stress rate integral equations of elastoplasticity are deduced based on Ref. [1] by consistent methods. The point at which the stresses and/or displacements are calculated can be in the body or on the boundary, an... The stress rate integral equations of elastoplasticity are deduced based on Ref. [1] by consistent methods. The point at which the stresses and/or displacements are calculated can be in the body or on the boundary, and in the plastic region or elastic one. The existence of the principal value integral in the plastic region is demonstrated strictly, and the theoretical basis is presented for the paticular solution method by unit initial stress fields. In the present method, programming is easy and general, and the numerical results are excellent. 展开更多
关键词 the stress rate of inner point or boundary one integral equations boundary element techniques the particular solution method by unit initial stress fields
下载PDF
上一页 1 2 27 下一页 到第
使用帮助 返回顶部