The thermally induced cyclic loading on integral bridge abutments causes soil deformation and lateral stress ratcheting behind the abutment wall due to the expansion and contraction of the bridge deck.The forward and ...The thermally induced cyclic loading on integral bridge abutments causes soil deformation and lateral stress ratcheting behind the abutment wall due to the expansion and contraction of the bridge deck.The forward and backward movements of the abutment in response to the expansion/contraction of the bridge deck lead to the formation of settlement trough and surface heaving,frequently creating a bump at the bridge approach and increasing the lateral earth pressure behind the abutment.Measures to reduce the bump at the bridge approach,including several treatment methods,such as compaction of selected backfill materials,grout injection,installation of approach slab,and using a layer of compressible inclusion material behind the abutment were proposed.However,these guidelines still lack sufficient design details and there are limited experimental findings to validate design assumptions.In this paper,the use of engineered compressible materials to alleviate the lateral earth pressure ratcheting and settlement at the bridge approach is investigated.The comparative study is presented for the soil-inclusion,material-structure and soil-structure interactions for an integral bridge under three different backfill conditions,i.e.(a)sand,(b)sand and EPS geofoam,and(c)sand and Infinergy®.The study was conducted in a special large-scale test chamber with a semi-scale abutment to gain better insights into the soil-structure interaction(SSI).The kinematics and rearrangement of the soil during the cyclic loading have been investigated to identify the mitigating effects of compressible inclusions.The comparative study indicates that both compressible inclusions perform comparatively well,however,Infinergy®is a better alternative than the medium-density EPS geofoam,as it works more effectively to reduce the backfill settlement and heaving as well as soil ratcheting effects under cyclic translational movement.展开更多
Effective application of digital integrated management and maintenance systems is essential for successful operation and maintenance management of bridge projects.This article analyzes the application strategy of such...Effective application of digital integrated management and maintenance systems is essential for successful operation and maintenance management of bridge projects.This article analyzes the application strategy of such systems.It provides an overview of comprehensive digital management and maintenance of bridges,an analysis of the basic components of the integrated management and maintenance system,and its application strategies.This study aims to offer guidance for the application of the system and to improve the quality of modern bridge engineering management and maintenance work.展开更多
A novel topology of Integrated Boost-SEPIC (IBS) AC-DC converter using common part sharing method (CPSM) has been proposed in this paper. Conventional boost converters with bridge rectifier configuration are inefficie...A novel topology of Integrated Boost-SEPIC (IBS) AC-DC converter using common part sharing method (CPSM) has been proposed in this paper. Conventional boost converters with bridge rectifier configuration are inefficient due to limited voltage step-up ratio which may not be applicable for high step-up applications as in the case of micro generators. The proposed IBS topology is based on the common part sharing method capable of operating both for positive and negative half cycle of the input signal. Result and simulation were conducted using PSIM environment. The proposed AC-DC IBS topology eliminates the requirement of bridge rectifier achieving high efficiency (about 99%), improved power factor (0.75, leading) and lower THD (about 38.8%) which is within IEEE standard.展开更多
In the railway bridge analysis and design method,dynamic train loads are regarded as static loads enhanced by an impact factor(IF).The IF coefficients for various railway bridges have been reported as a function of sp...In the railway bridge analysis and design method,dynamic train loads are regarded as static loads enhanced by an impact factor(IF).The IF coefficients for various railway bridges have been reported as a function of span length or frequency of the bridges in Eurocode(2003).However,these IF coefficient values neglect the effects of very high speeds(>200 km/h)and soil-structure interaction(SSI).In this work,a comprehensive study to assess the impact factor coefficients of mid-span vertical displacements for continuous and integral railway bridges subjected to high-speed moving loads is reported.Three different configurations,each for the three-dimensional(3D)continuous and integral bridge,are considered.Also,single-track(1-T)and two-track(2-T)“real train”loading cases for both these bridge types are considered.Subsequently,finite element analysis of the full-scale 3D bridge models,to identify their IF values,considering the effects of SSI for three different soil conditions,is conducted.The IF values obtained from the study for both bridge types are comparable and are greater than the values recommended by Eurocode(2003).The results reveal that with a loss of soil stiffness,the IF value reduces;thus,it confirms the importance of SSI analysis.展开更多
MIBS算法是由Izadi等人在CANS 2009上提出的一个轻量级分组密码算法,整体采用Feistel结构,轮函数使用SP结构,分组长度为64 b,包含MIBS-64和MIBS-80这2个版本,适用于资源受限的环境,例如RFID(radio frequency identification)标签.研究M...MIBS算法是由Izadi等人在CANS 2009上提出的一个轻量级分组密码算法,整体采用Feistel结构,轮函数使用SP结构,分组长度为64 b,包含MIBS-64和MIBS-80这2个版本,适用于资源受限的环境,例如RFID(radio frequency identification)标签.研究MIBS算法针对积分攻击的安全性.首先,针对该算法的密钥编排算法,利用密钥搭桥技术,分别得到了MIBS-64和MIBS-80的轮密钥的相关性质.其次,利用基于MILP(mixed integer linear programming)的比特可分性的自动化建模搜索方法,构造了MIBS的8轮和9轮积分区分器.然后,基于8轮积分区分器,给出了12轮MIBS-64的密钥恢复攻击,数据复杂度为2^(60),时间复杂度为2^(63.42);最后,基于9轮积分区分器,给出了14轮MIBS-64的密钥恢复攻击,数据复杂度为2^(63),时间复杂度为2^(66).这是目前对MIBS-64和MIBS-80轮数最长的积分攻击.展开更多
Nowadays,the scope of bridge construction projects in China is becoming wider,which promotes China's economic development to a large extent and also improves China's transportation system.Meanwhile,people also...Nowadays,the scope of bridge construction projects in China is becoming wider,which promotes China's economic development to a large extent and also improves China's transportation system.Meanwhile,people also put forward new requirements for the quality of steel structure bridges.However,in actual design,due to the influence of many fectors,some problems are inevitable,which will affect the integrity of the design.Therefore,the designer needs to fully grasp the possible design problems,and then take efiective measures to improve the integrity of the design scheme,so as to ensure the quality of the steel structure bridge and improves the safety of the steel structure bridge from the fundamentals.This paper mainly focuses on steel structure bridges,analyzed the current status of steel structure bridge types and their selection,and proposes the integrity design strategy of steel structure bridges.展开更多
Theoretical study on and safeguarding of cultural landscape heritage has been put on the agenda of heritage protection in Zhejiang and Fujian provinces.The safeguarding of timber-framed arch bridge heritage in the pas...Theoretical study on and safeguarding of cultural landscape heritage has been put on the agenda of heritage protection in Zhejiang and Fujian provinces.The safeguarding of timber-framed arch bridge heritage in the past 5 decades could be classified into 3 stages,and heritage protection in all 3 stages was closely related to original meaning of "landscape",which proved that timber-framed arch bridge heritage had profound inside information,and the safeguarding of timber-framed arch bridge from the perspective of cultural landscape heritage was worth further study.Safeguarding of timber-framed arch bridge cultural landscape heritage focused on integrated conservation,but not protection of individual bridges.Integrated conservation of world heritage is to maintain and restore the integrated environment landscape of the heritage,thus protection of timber-framed arch bridge heritage is not only to explore its architectural craftsmanship,but also to lay a foundation for the dynamic succession of such craftsmanship as intangible cultural heritage.Value of the existing timber-framed arch bridges as historic building heritage was discussed,and it was proposed that ultimate objectives of the safeguarding could be realized step by step from 3 layers.展开更多
With the rapid developments of the high-speed railway in China, a great number of long-span bridges have been constructed in order to cross rivers and gorges. At present, the longest main span of a constructed high-sp...With the rapid developments of the high-speed railway in China, a great number of long-span bridges have been constructed in order to cross rivers and gorges. At present, the longest main span of a constructed high-speed railway bridge is only 630 m. The main span of Hutong Yangtze River Bridge and of Wufengshan Yangtze River Bridge, which are under construction, will be much longer, at 1092 m each. In order to overcome the technical issues that originate from the extremely large dead loading and the relatively small structural stiffness of long-span high-speed railway bridges, many new technologies in bridge construction, design, materials, and so forth have been developed. This paper carefully reviews progress in the construction technologies of multi-function combined bridges in China, including com- bined highway and railway bridges and multi-track railway bridges. Innovations and practices regarding new types of bridge and composite bridge structures, such as bridges with three cable planes and three main trusses, inclined main trusses, slab-truss composite sections, and steel-concrete composite sections, are introduced. In addition, investigations into high-performance materials and integral fabrication and erection techniques for long-span railway bridges are summarized. At the end of the paper, prospects for the future development of long-span high-speed railwav bridges are provided.展开更多
The Ornstein Zernike equation is solved with the Rogers Young approximation for bulk hard sphere fluidand Lennard-Jones fluid for several state points. Then the resulted bulk fluid radial distribution function combine...The Ornstein Zernike equation is solved with the Rogers Young approximation for bulk hard sphere fluidand Lennard-Jones fluid for several state points. Then the resulted bulk fluid radial distribution function combinedwith the test particle method is employed to determine numerically the function relationship of bridge functional as afunction of indirect correlation function. It is found that all of the calculated points from different phase space statepoints for a same type of fluid collapse onto a same smooth curve. Then the numerically obtained curve is used tosubstitute the analytic expression of the bridge functional as a function of indirect correlation function required in themethodology [J. Chem. Phys. 112 (2000) 8079] to deterrnine the density distribution of non-uniform hard spherefluid and Lennard Jones fluid. The good agreement of theoretical predictions with the computer simulation data isobtained. The present numerical procedure incorporates the knowledge of bulk fluid radial distribution function intothe constructing of the density functional approximation and makes the original methodology more accurate and moreflexible for various interaction potential fluid.展开更多
The Ornstein-Zernike equation is solved with the Rogers-Young approximation for bull, hard sphere fluid and Lennard-Jones fluid for several state points. Then the resulted bulk fluid radial distribution function combi...The Ornstein-Zernike equation is solved with the Rogers-Young approximation for bull, hard sphere fluid and Lennard-Jones fluid for several state points. Then the resulted bulk fluid radial distribution function combined with the test particle method is employed to determine numerically the function relationship of bridge functional as a function of indirect correlation function. It is found that all of the calculated points from different phase space state points for a same type of fluid collapse onto a same smooth curve. Then the numerically obtained curve is used to substitute the analytic expression of the bridge functional as a function of indirect correlation function required in the methodology [J. Chem. Phys. 112 (2000) 8079] to determine the density distribution of non-uniform hard sphere fluid and Lennard-Jones fluid. The good agreement of theoretical predictions with the computer simulation data is obtained. The present numerical procedure incorporates the knowledge of bulk fluid radial distribution function into the constructing of the density functional approximation and makes the original methodology more accurate and more flexible for various interaction potential fluid.展开更多
The questions of what kind of individuals university education should cultivate,how to cultivate them,and for whom they are being trained are pressing issues that require immediate solutions.Implementing ideological a...The questions of what kind of individuals university education should cultivate,how to cultivate them,and for whom they are being trained are pressing issues that require immediate solutions.Implementing ideological and political education is a fundamental way to address these challenges.Integrating political education into professional courses is just as important as imparting knowledge,fostering interest,transmitting values,and shaping students’character and spirit.The excavation of ideological and political elements in bridge engineering courses should comprehensively consider the dependent subject of ideological and political elements,the source of cases,the depth of excavation,the trade-offs between courses,the commonality and multifaceted nature of ideological and political elements,as well as the two ways of ideological and political elements integration.Ideological and political elements should be integrated into all stages of classroom lectures,course assignments,final examinations,course design,discipline competitions,school-enterprise cooperation,etc.,so as to achieve the effect of educating people in the whole process.展开更多
基金The authors gratefully acknowledge and thank BASF for providing the Infinergymaterial used in this research.The continuous technical support provided by Mr.Van Doan and Advanced Materials Characterisation Facility(AMCF)at Western Sydney University(WSU)are also gratefully acknowledged.This research is supported by the Graduate student research fund of WSU.This research did not receive any specific grant from funding agencies in the public,commercial,or not-for-profit sectors.
文摘The thermally induced cyclic loading on integral bridge abutments causes soil deformation and lateral stress ratcheting behind the abutment wall due to the expansion and contraction of the bridge deck.The forward and backward movements of the abutment in response to the expansion/contraction of the bridge deck lead to the formation of settlement trough and surface heaving,frequently creating a bump at the bridge approach and increasing the lateral earth pressure behind the abutment.Measures to reduce the bump at the bridge approach,including several treatment methods,such as compaction of selected backfill materials,grout injection,installation of approach slab,and using a layer of compressible inclusion material behind the abutment were proposed.However,these guidelines still lack sufficient design details and there are limited experimental findings to validate design assumptions.In this paper,the use of engineered compressible materials to alleviate the lateral earth pressure ratcheting and settlement at the bridge approach is investigated.The comparative study is presented for the soil-inclusion,material-structure and soil-structure interactions for an integral bridge under three different backfill conditions,i.e.(a)sand,(b)sand and EPS geofoam,and(c)sand and Infinergy®.The study was conducted in a special large-scale test chamber with a semi-scale abutment to gain better insights into the soil-structure interaction(SSI).The kinematics and rearrangement of the soil during the cyclic loading have been investigated to identify the mitigating effects of compressible inclusions.The comparative study indicates that both compressible inclusions perform comparatively well,however,Infinergy®is a better alternative than the medium-density EPS geofoam,as it works more effectively to reduce the backfill settlement and heaving as well as soil ratcheting effects under cyclic translational movement.
文摘Effective application of digital integrated management and maintenance systems is essential for successful operation and maintenance management of bridge projects.This article analyzes the application strategy of such systems.It provides an overview of comprehensive digital management and maintenance of bridges,an analysis of the basic components of the integrated management and maintenance system,and its application strategies.This study aims to offer guidance for the application of the system and to improve the quality of modern bridge engineering management and maintenance work.
文摘A novel topology of Integrated Boost-SEPIC (IBS) AC-DC converter using common part sharing method (CPSM) has been proposed in this paper. Conventional boost converters with bridge rectifier configuration are inefficient due to limited voltage step-up ratio which may not be applicable for high step-up applications as in the case of micro generators. The proposed IBS topology is based on the common part sharing method capable of operating both for positive and negative half cycle of the input signal. Result and simulation were conducted using PSIM environment. The proposed AC-DC IBS topology eliminates the requirement of bridge rectifier achieving high efficiency (about 99%), improved power factor (0.75, leading) and lower THD (about 38.8%) which is within IEEE standard.
文摘In the railway bridge analysis and design method,dynamic train loads are regarded as static loads enhanced by an impact factor(IF).The IF coefficients for various railway bridges have been reported as a function of span length or frequency of the bridges in Eurocode(2003).However,these IF coefficient values neglect the effects of very high speeds(>200 km/h)and soil-structure interaction(SSI).In this work,a comprehensive study to assess the impact factor coefficients of mid-span vertical displacements for continuous and integral railway bridges subjected to high-speed moving loads is reported.Three different configurations,each for the three-dimensional(3D)continuous and integral bridge,are considered.Also,single-track(1-T)and two-track(2-T)“real train”loading cases for both these bridge types are considered.Subsequently,finite element analysis of the full-scale 3D bridge models,to identify their IF values,considering the effects of SSI for three different soil conditions,is conducted.The IF values obtained from the study for both bridge types are comparable and are greater than the values recommended by Eurocode(2003).The results reveal that with a loss of soil stiffness,the IF value reduces;thus,it confirms the importance of SSI analysis.
文摘MIBS算法是由Izadi等人在CANS 2009上提出的一个轻量级分组密码算法,整体采用Feistel结构,轮函数使用SP结构,分组长度为64 b,包含MIBS-64和MIBS-80这2个版本,适用于资源受限的环境,例如RFID(radio frequency identification)标签.研究MIBS算法针对积分攻击的安全性.首先,针对该算法的密钥编排算法,利用密钥搭桥技术,分别得到了MIBS-64和MIBS-80的轮密钥的相关性质.其次,利用基于MILP(mixed integer linear programming)的比特可分性的自动化建模搜索方法,构造了MIBS的8轮和9轮积分区分器.然后,基于8轮积分区分器,给出了12轮MIBS-64的密钥恢复攻击,数据复杂度为2^(60),时间复杂度为2^(63.42);最后,基于9轮积分区分器,给出了14轮MIBS-64的密钥恢复攻击,数据复杂度为2^(63),时间复杂度为2^(66).这是目前对MIBS-64和MIBS-80轮数最长的积分攻击.
文摘Nowadays,the scope of bridge construction projects in China is becoming wider,which promotes China's economic development to a large extent and also improves China's transportation system.Meanwhile,people also put forward new requirements for the quality of steel structure bridges.However,in actual design,due to the influence of many fectors,some problems are inevitable,which will affect the integrity of the design.Therefore,the designer needs to fully grasp the possible design problems,and then take efiective measures to improve the integrity of the design scheme,so as to ensure the quality of the steel structure bridge and improves the safety of the steel structure bridge from the fundamentals.This paper mainly focuses on steel structure bridges,analyzed the current status of steel structure bridge types and their selection,and proposes the integrity design strategy of steel structure bridges.
文摘Theoretical study on and safeguarding of cultural landscape heritage has been put on the agenda of heritage protection in Zhejiang and Fujian provinces.The safeguarding of timber-framed arch bridge heritage in the past 5 decades could be classified into 3 stages,and heritage protection in all 3 stages was closely related to original meaning of "landscape",which proved that timber-framed arch bridge heritage had profound inside information,and the safeguarding of timber-framed arch bridge from the perspective of cultural landscape heritage was worth further study.Safeguarding of timber-framed arch bridge cultural landscape heritage focused on integrated conservation,but not protection of individual bridges.Integrated conservation of world heritage is to maintain and restore the integrated environment landscape of the heritage,thus protection of timber-framed arch bridge heritage is not only to explore its architectural craftsmanship,but also to lay a foundation for the dynamic succession of such craftsmanship as intangible cultural heritage.Value of the existing timber-framed arch bridges as historic building heritage was discussed,and it was proposed that ultimate objectives of the safeguarding could be realized step by step from 3 layers.
文摘With the rapid developments of the high-speed railway in China, a great number of long-span bridges have been constructed in order to cross rivers and gorges. At present, the longest main span of a constructed high-speed railway bridge is only 630 m. The main span of Hutong Yangtze River Bridge and of Wufengshan Yangtze River Bridge, which are under construction, will be much longer, at 1092 m each. In order to overcome the technical issues that originate from the extremely large dead loading and the relatively small structural stiffness of long-span high-speed railway bridges, many new technologies in bridge construction, design, materials, and so forth have been developed. This paper carefully reviews progress in the construction technologies of multi-function combined bridges in China, including com- bined highway and railway bridges and multi-track railway bridges. Innovations and practices regarding new types of bridge and composite bridge structures, such as bridges with three cable planes and three main trusses, inclined main trusses, slab-truss composite sections, and steel-concrete composite sections, are introduced. In addition, investigations into high-performance materials and integral fabrication and erection techniques for long-span railway bridges are summarized. At the end of the paper, prospects for the future development of long-span high-speed railwav bridges are provided.
基金The project supported by the Natural Science Foundation of Hunan Province under Grant No. 01JJY3007 and Natural Science Foun-dation of Education Department of Hunan Province of China under Grant No. 01C338
文摘The Ornstein Zernike equation is solved with the Rogers Young approximation for bulk hard sphere fluidand Lennard-Jones fluid for several state points. Then the resulted bulk fluid radial distribution function combinedwith the test particle method is employed to determine numerically the function relationship of bridge functional as afunction of indirect correlation function. It is found that all of the calculated points from different phase space statepoints for a same type of fluid collapse onto a same smooth curve. Then the numerically obtained curve is used tosubstitute the analytic expression of the bridge functional as a function of indirect correlation function required in themethodology [J. Chem. Phys. 112 (2000) 8079] to deterrnine the density distribution of non-uniform hard spherefluid and Lennard Jones fluid. The good agreement of theoretical predictions with the computer simulation data isobtained. The present numerical procedure incorporates the knowledge of bulk fluid radial distribution function intothe constructing of the density functional approximation and makes the original methodology more accurate and moreflexible for various interaction potential fluid.
文摘The Ornstein-Zernike equation is solved with the Rogers-Young approximation for bull, hard sphere fluid and Lennard-Jones fluid for several state points. Then the resulted bulk fluid radial distribution function combined with the test particle method is employed to determine numerically the function relationship of bridge functional as a function of indirect correlation function. It is found that all of the calculated points from different phase space state points for a same type of fluid collapse onto a same smooth curve. Then the numerically obtained curve is used to substitute the analytic expression of the bridge functional as a function of indirect correlation function required in the methodology [J. Chem. Phys. 112 (2000) 8079] to determine the density distribution of non-uniform hard sphere fluid and Lennard-Jones fluid. The good agreement of theoretical predictions with the computer simulation data is obtained. The present numerical procedure incorporates the knowledge of bulk fluid radial distribution function into the constructing of the density functional approximation and makes the original methodology more accurate and more flexible for various interaction potential fluid.
基金Chongqing Institute of Engineering Ideological and Political Teaching Demonstration Course Construction Project(KC20230010)。
文摘The questions of what kind of individuals university education should cultivate,how to cultivate them,and for whom they are being trained are pressing issues that require immediate solutions.Implementing ideological and political education is a fundamental way to address these challenges.Integrating political education into professional courses is just as important as imparting knowledge,fostering interest,transmitting values,and shaping students’character and spirit.The excavation of ideological and political elements in bridge engineering courses should comprehensively consider the dependent subject of ideological and political elements,the source of cases,the depth of excavation,the trade-offs between courses,the commonality and multifaceted nature of ideological and political elements,as well as the two ways of ideological and political elements integration.Ideological and political elements should be integrated into all stages of classroom lectures,course assignments,final examinations,course design,discipline competitions,school-enterprise cooperation,etc.,so as to achieve the effect of educating people in the whole process.