In this paper, we investigate a cooperation mechanism for satellite-terrestrial integrated networks. The terrestrial relays act as the supplement of traditional small cells and cooperatively provide seamless coverage ...In this paper, we investigate a cooperation mechanism for satellite-terrestrial integrated networks. The terrestrial relays act as the supplement of traditional small cells and cooperatively provide seamless coverage for users in the densely populated areas.To deal with the dynamic satellite backhaul links and backhaul capacity caused by the satellite mobility, severe co-channel interference in both satellite backhaul links and user links introduced by spectrum sharing,and the difference demands of users as well as heterogeneous characteristics of terrestrial backhaul and satellite backhaul, we propose a joint user association and satellite selection scheme to maximize the total sum rate. The optimization problem is formulated via jointly considering the influence of dynamic backhaul links, individual requirements and targeted interference management strategies, which is decomposed into two subproblems: user association and satellite selection. The user association is formulated as a nonconvex optimization problem, and solved through a low-complexity heuristic scheme to find the most suitable access point serving each user. Then, the satellite selection is resolved based on the cooperation among terrestrial relays to maximize the total backhaul capacity with the minimum date rate constraints. Finally,simulation results show the effectiveness of the proposed scheme in terms of total sum rate and power efficiency of TRs' backhaul.展开更多
On farm bio-resource recycling has been given greater emphasis with the introduction of conservation agriculture specifically withclimate change scenarios in the mid-hills of the north-west Himalaya region(NWHR). Un...On farm bio-resource recycling has been given greater emphasis with the introduction of conservation agriculture specifically withclimate change scenarios in the mid-hills of the north-west Himalaya region(NWHR). Under this changing scenario, elevation, slope aspect and integrated nutrient management(INM) may affect significantly soil quality and crop productivity. A study was conducted during 2009-2010 to 2010-2011 at the Ashti watershed of NWHR in a rainfed condition to examine the influence of elevation, slope aspect and integrated nutrient management(INM) on soil resource and crop productivity. Two years of farm demonstration trials indicated that crop productivity and soil quality is significantly affected by elevation, slope aspect and INM. Results showed that wheat equivalent yield(WEY) of improved technology increased crop productivity by -20%-37% compared to the conventional system. Intercropping of maize with cowpea and soybean enhanced yield by another 8%-17%. North aspect and higher elevation increased crop productivity by 15%-25% compared to south aspect and low elevation(except paddy). Intercropping of maize with cowpea and soybean enhanced yield by another 8%-15%. Irrespective of slope, elevation and cropping system, the WEY increased by -30% in this region due to INMtechnology. The influence of elevation, slope aspect and INM significantly affected soil resources(SQI) and soil carbon change(SCC). SCC is significantly correlated with SQI for conventional(R2 = 0.65*), INM technology(R2 = 0.81*) and for both technologies(R2 = 0.73*). It is recommended that at higher elevation.(except for paddy soils) with a north facing slope, INM is recommended for higher crop productivity; conservation of soil resources is recommended for the mid hills of NWHR; and single values of SCC are appropriate as a SQI for this region.展开更多
Optimistic and sustainable supply of soil available nutrients to crop plants enhances productivity. Integrated nutrient management (INM) approach can improve soil fertility on long term basis. The present study was co...Optimistic and sustainable supply of soil available nutrients to crop plants enhances productivity. Integrated nutrient management (INM) approach can improve soil fertility on long term basis. The present study was conducted to determine effects of INM on quantitative and qualitative characters of two Safflower (Carthamus tinctorius L.) cultivars “Thori-78 and Leed-00”. Five treatments using different composition of poultry litter, farm yard manure, nitrogen and phosphorous fertilizers with recommended dose as a control measure were replicated thrice in randomized complete design. The results of field trial depicted maximum plant height (174.6 cm), number of heads plant-1 (42.67), number of seeds head-1 (59.0), thousand seed weight (42.26 g), biological yield (3089 Kg·ha-1) and seed yield (455.2 Kg·ha-1) recorded from combined application of FYM @ 2 t·ha-1and Half (N-P) (soil application) (T5) in Genotype “Leed-00” which was statistically different from all other treatments. Thori-78 also showed increase in yield and yield components under the same treatment (T5) i.e.2 t·ha-1 FYM and Half (N-P).No effect of INM was found on fatty acid composition of safflower cultivars. The correlation coefficients illustrated positive and significant association of seed yield with plant height (0.89), number of heads pod-1 (0.86) and number of seeds head-1 (0.83) as a result of application of selected treatment. These results demonstrated the significance of INM in safflower yield improvement under rainfed conditions.展开更多
Purpose The control network is a critical infrastructure that supports the stable operation of the accelerator.Each device accessing the control network has different device information,such as IP address,MAC address,...Purpose The control network is a critical infrastructure that supports the stable operation of the accelerator.Each device accessing the control network has different device information,such as IP address,MAC address,connected switches and ports,device location and purpose.Accurately maintaining the mapping relationship between these device information facilitates network management.It helps inventory assets,fault location and provide visibility into dynamic changes of device on the network.However,existing tools cannot fully satisfy these demands.They only map some information and lack details important for accelerator facilities like device location and purpose.Additionally,they only reflect the current status rather than indicating dynamic changes across all devices over time.As intelligent devices proliferate,the scale of the control network is rapidly expanding,posing greater challenges in maintaining mapping relationships.Methods This paper proposes a device information-centered Accelerator Control Network Management System(ACNMS).It establishes a device information management framework and allows network administrators to perceive the dynamic changes of devices on the network.The system adopts a layered architecture.Back-end modules implement the core logic of all functions.The graphical user interface presents data and provides a management portal.Results The system test on the control network of the National Synchrotron Radiation Laboratory demonstrates that it can meet the functional design objectives.The application scenarios of the ACNMS are further expanded through system integration and combination with network automation.Conclusion The ACNMS has proven to be an efficient network management tool that significantly improves the operation and maintenance efficiency of the accelerator control network.展开更多
Nowadays both satellite and terrestrial networks are expanding rapidly to meet the ever-increasing demands for higher throughput,lower latency,and wider coverage.However,spectrum scarcity places obstacles in the susta...Nowadays both satellite and terrestrial networks are expanding rapidly to meet the ever-increasing demands for higher throughput,lower latency,and wider coverage.However,spectrum scarcity places obstacles in the sustainable development.To accommodate the expanding network within a limited spectrum,spectrum sharing is deemed as a promising candidate.Particularly,cognitive radio(CR)has been proposed in the literature to allow satellite and terrestrial networks to share their spectrum dynamically.However,the existing CR-based schemes are found to be impractical and inefficient because they neglect the difficulty in obtaining the accurate and timely environment perception in satellite communications and only focus on link-level coexistence with limited interoperability.In this paper,we propose an intelligent spectrum management framework based on software defined network(SDN)and artificial intelligence(AI).Specifically,SDN transforms the heterogenous satellite and terrestrial networks into an integrated satellite and terrestrial network(ISTN)with reconfigurability and interoperability.AI is further used to make predictive environment perception and to configure the network for optimal resource allocation.Briefly,the proposed framework provides a new paradigm to integrate and exploit the spectrum of satellite and terrestrial networks.展开更多
The Space-Terrestrial Integrated Network(STIN)is considered to be a promising paradigm for realizing worldwide wireless connectivity in sixth-Generation(6G)wireless communication systems.Unfortunately,excessive interf...The Space-Terrestrial Integrated Network(STIN)is considered to be a promising paradigm for realizing worldwide wireless connectivity in sixth-Generation(6G)wireless communication systems.Unfortunately,excessive interference in the STIN degrades the wireless links and leads to poor performance,which is a bottleneck that prevents its commercial deployment.In this article,the crucial features and challenges of STIN-based interference are comprehensively investigated,and some candidate solutions for Interference Management(IM)are summarized.As traditional IM techniques are designed for single-application scenarios or specific types of interference,they cannot meet the requirements of the STIN architecture.To address this issue,we propose a self-adaptation IM method that reaps the potential benefits of STIN and is applicable to both rural and urban areas.A number of open issues and potential challenges for IM are discussed,which provide insights regarding future research directions related to STIN.展开更多
In Future Space-Terrestrial Integrated Networks (FSTINs), mobility is the norm rather than the exception, the current TCP/IP architecture is not competent. As a promising future network architecture, Named Data Netw...In Future Space-Terrestrial Integrated Networks (FSTINs), mobility is the norm rather than the exception, the current TCP/IP architecture is not competent. As a promising future network architecture, Named Data Networking (NDN) can support content consumer mobility naturally, but the content producer mobility support remains a challenging problem. Most previous research simply considered this problem in terrestrial scenarios, which involve stable infrastructures to achieve node mobility management. In this paper, we consider the problem in an FSTIN scenario without special handover management infrastructures. Specifically, we propose a tracing-based producer mobility management scheme and an addressing-assisted forwarding method via NDN architecture. We formally describe Multi-Layered Satellite Networks via a Time Varying Graph model and define the foremost path calculating problem to calculate the route of space segment, as well as an algorithm that can function in both dense (connected) and sparse (delay/disruption tolerant) scenarios. Finally, we discuss the acceleration method that can improve the Space-Terrestrial Integrated forwarding efficiency. Performance evaluation demonstrates that the proposed scheme can support fast handover and efficient forwarding in the FSTIN scenario.展开更多
Integrated satellite and terrestrial networks can be used to solve communication problems in natural disasters,forestry monitoring and control,and military communication.Unlike traditional communication methods,integr...Integrated satellite and terrestrial networks can be used to solve communication problems in natural disasters,forestry monitoring and control,and military communication.Unlike traditional communication methods,integrated networks are effective solutions because of their advantages in communication,remote sensing,monitoring,navigation,and all-weather seamless coverage.Monitoring,urban management,and other aspects will also have a wide range of applications.This study first builds an integrated network overlay model,and divides the satellite network into two categories:terrestrial network end users and satellite network end users.The energy efficiency,throughput,and signal-to-noise ratio(SINR)are deduced and analyzed.In this paper,we discuss the influence of various factors,such as transmit power,number of users,size of the protected area,and terminal position,on energy efficiency and SINR.A satellite-sharing scheme with a combination of the user location and an exclusion zone with high energy efficiency and anti-jamming capability is proposed to provide better communication quality for end users in integrated satellite and terrestrial networks.展开更多
在网络威胁呈爆发式增长的当下,随着业务模式数字化重塑与业务持续性增长,银行业面临因网络安全防线持续扩大所导致的安全设备冗杂、安全运营任务繁重、实战能力不足等问题.对银行业金融机构在安全运营中所面临的挑战进行分析,提出了融...在网络威胁呈爆发式增长的当下,随着业务模式数字化重塑与业务持续性增长,银行业面临因网络安全防线持续扩大所导致的安全设备冗杂、安全运营任务繁重、实战能力不足等问题.对银行业金融机构在安全运营中所面临的挑战进行分析,提出了融合平战一体化安全运营机制的银行业DAO(defence,ability and operation)数字化安全运营体系,重点研究纵深化防护基础、原子化能力中枢、数字化运营总台3层次架构,以及针对常态化、高强度、无间断防护目标的平战一体机制实施路径.展开更多
基金supported by National Natural Science Foundation of China (No. 62201593, 62471480, and 62171466)。
文摘In this paper, we investigate a cooperation mechanism for satellite-terrestrial integrated networks. The terrestrial relays act as the supplement of traditional small cells and cooperatively provide seamless coverage for users in the densely populated areas.To deal with the dynamic satellite backhaul links and backhaul capacity caused by the satellite mobility, severe co-channel interference in both satellite backhaul links and user links introduced by spectrum sharing,and the difference demands of users as well as heterogeneous characteristics of terrestrial backhaul and satellite backhaul, we propose a joint user association and satellite selection scheme to maximize the total sum rate. The optimization problem is formulated via jointly considering the influence of dynamic backhaul links, individual requirements and targeted interference management strategies, which is decomposed into two subproblems: user association and satellite selection. The user association is formulated as a nonconvex optimization problem, and solved through a low-complexity heuristic scheme to find the most suitable access point serving each user. Then, the satellite selection is resolved based on the cooperation among terrestrial relays to maximize the total backhaul capacity with the minimum date rate constraints. Finally,simulation results show the effectiveness of the proposed scheme in terms of total sum rate and power efficiency of TRs' backhaul.
文摘On farm bio-resource recycling has been given greater emphasis with the introduction of conservation agriculture specifically withclimate change scenarios in the mid-hills of the north-west Himalaya region(NWHR). Under this changing scenario, elevation, slope aspect and integrated nutrient management(INM) may affect significantly soil quality and crop productivity. A study was conducted during 2009-2010 to 2010-2011 at the Ashti watershed of NWHR in a rainfed condition to examine the influence of elevation, slope aspect and integrated nutrient management(INM) on soil resource and crop productivity. Two years of farm demonstration trials indicated that crop productivity and soil quality is significantly affected by elevation, slope aspect and INM. Results showed that wheat equivalent yield(WEY) of improved technology increased crop productivity by -20%-37% compared to the conventional system. Intercropping of maize with cowpea and soybean enhanced yield by another 8%-17%. North aspect and higher elevation increased crop productivity by 15%-25% compared to south aspect and low elevation(except paddy). Intercropping of maize with cowpea and soybean enhanced yield by another 8%-15%. Irrespective of slope, elevation and cropping system, the WEY increased by -30% in this region due to INMtechnology. The influence of elevation, slope aspect and INM significantly affected soil resources(SQI) and soil carbon change(SCC). SCC is significantly correlated with SQI for conventional(R2 = 0.65*), INM technology(R2 = 0.81*) and for both technologies(R2 = 0.73*). It is recommended that at higher elevation.(except for paddy soils) with a north facing slope, INM is recommended for higher crop productivity; conservation of soil resources is recommended for the mid hills of NWHR; and single values of SCC are appropriate as a SQI for this region.
文摘Optimistic and sustainable supply of soil available nutrients to crop plants enhances productivity. Integrated nutrient management (INM) approach can improve soil fertility on long term basis. The present study was conducted to determine effects of INM on quantitative and qualitative characters of two Safflower (Carthamus tinctorius L.) cultivars “Thori-78 and Leed-00”. Five treatments using different composition of poultry litter, farm yard manure, nitrogen and phosphorous fertilizers with recommended dose as a control measure were replicated thrice in randomized complete design. The results of field trial depicted maximum plant height (174.6 cm), number of heads plant-1 (42.67), number of seeds head-1 (59.0), thousand seed weight (42.26 g), biological yield (3089 Kg·ha-1) and seed yield (455.2 Kg·ha-1) recorded from combined application of FYM @ 2 t·ha-1and Half (N-P) (soil application) (T5) in Genotype “Leed-00” which was statistically different from all other treatments. Thori-78 also showed increase in yield and yield components under the same treatment (T5) i.e.2 t·ha-1 FYM and Half (N-P).No effect of INM was found on fatty acid composition of safflower cultivars. The correlation coefficients illustrated positive and significant association of seed yield with plant height (0.89), number of heads pod-1 (0.86) and number of seeds head-1 (0.83) as a result of application of selected treatment. These results demonstrated the significance of INM in safflower yield improvement under rainfed conditions.
基金supported by Hefei Advanced Light Facility(HALF),a major national science and technology infrastructure in China.
文摘Purpose The control network is a critical infrastructure that supports the stable operation of the accelerator.Each device accessing the control network has different device information,such as IP address,MAC address,connected switches and ports,device location and purpose.Accurately maintaining the mapping relationship between these device information facilitates network management.It helps inventory assets,fault location and provide visibility into dynamic changes of device on the network.However,existing tools cannot fully satisfy these demands.They only map some information and lack details important for accelerator facilities like device location and purpose.Additionally,they only reflect the current status rather than indicating dynamic changes across all devices over time.As intelligent devices proliferate,the scale of the control network is rapidly expanding,posing greater challenges in maintaining mapping relationships.Methods This paper proposes a device information-centered Accelerator Control Network Management System(ACNMS).It establishes a device information management framework and allows network administrators to perceive the dynamic changes of devices on the network.The system adopts a layered architecture.Back-end modules implement the core logic of all functions.The graphical user interface presents data and provides a management portal.Results The system test on the control network of the National Synchrotron Radiation Laboratory demonstrates that it can meet the functional design objectives.The application scenarios of the ACNMS are further expanded through system integration and combination with network automation.Conclusion The ACNMS has proven to be an efficient network management tool that significantly improves the operation and maintenance efficiency of the accelerator control network.
基金National Natural Science Foundation of China(61631005)National Natural Science Foundation of China(U1801261)+3 种基金National Natural Science Foundation of China(61571100)National Key R&D Program of China(2018YFB1801105)Central Universities(ZYGX2019Z022)Programme of Introducing Talents of Discipline to Universities(B20064)。
文摘Nowadays both satellite and terrestrial networks are expanding rapidly to meet the ever-increasing demands for higher throughput,lower latency,and wider coverage.However,spectrum scarcity places obstacles in the sustainable development.To accommodate the expanding network within a limited spectrum,spectrum sharing is deemed as a promising candidate.Particularly,cognitive radio(CR)has been proposed in the literature to allow satellite and terrestrial networks to share their spectrum dynamically.However,the existing CR-based schemes are found to be impractical and inefficient because they neglect the difficulty in obtaining the accurate and timely environment perception in satellite communications and only focus on link-level coexistence with limited interoperability.In this paper,we propose an intelligent spectrum management framework based on software defined network(SDN)and artificial intelligence(AI).Specifically,SDN transforms the heterogenous satellite and terrestrial networks into an integrated satellite and terrestrial network(ISTN)with reconfigurability and interoperability.AI is further used to make predictive environment perception and to configure the network for optimal resource allocation.Briefly,the proposed framework provides a new paradigm to integrate and exploit the spectrum of satellite and terrestrial networks.
基金This work was supported in part by the National Key R&D Program of China(No.2020YFB1806703)the National Natural Science Foundation of China(No.61901315)+1 种基金the State Major Science and Technology Special Project(No.2018ZX03001023)the Fundamental Research Funds for the Central Universities(No.2020RC03).
文摘The Space-Terrestrial Integrated Network(STIN)is considered to be a promising paradigm for realizing worldwide wireless connectivity in sixth-Generation(6G)wireless communication systems.Unfortunately,excessive interference in the STIN degrades the wireless links and leads to poor performance,which is a bottleneck that prevents its commercial deployment.In this article,the crucial features and challenges of STIN-based interference are comprehensively investigated,and some candidate solutions for Interference Management(IM)are summarized.As traditional IM techniques are designed for single-application scenarios or specific types of interference,they cannot meet the requirements of the STIN architecture.To address this issue,we propose a self-adaptation IM method that reaps the potential benefits of STIN and is applicable to both rural and urban areas.A number of open issues and potential challenges for IM are discussed,which provide insights regarding future research directions related to STIN.
基金supported by the National Natural Science Foundation of China (Nos. 61772385 and 61572370)
文摘In Future Space-Terrestrial Integrated Networks (FSTINs), mobility is the norm rather than the exception, the current TCP/IP architecture is not competent. As a promising future network architecture, Named Data Networking (NDN) can support content consumer mobility naturally, but the content producer mobility support remains a challenging problem. Most previous research simply considered this problem in terrestrial scenarios, which involve stable infrastructures to achieve node mobility management. In this paper, we consider the problem in an FSTIN scenario without special handover management infrastructures. Specifically, we propose a tracing-based producer mobility management scheme and an addressing-assisted forwarding method via NDN architecture. We formally describe Multi-Layered Satellite Networks via a Time Varying Graph model and define the foremost path calculating problem to calculate the route of space segment, as well as an algorithm that can function in both dense (connected) and sparse (delay/disruption tolerant) scenarios. Finally, we discuss the acceleration method that can improve the Space-Terrestrial Integrated forwarding efficiency. Performance evaluation demonstrates that the proposed scheme can support fast handover and efficient forwarding in the FSTIN scenario.
基金This work is supported by the National Natural Science Foundation of China(Nos.61671183,61771163,91438205).
文摘Integrated satellite and terrestrial networks can be used to solve communication problems in natural disasters,forestry monitoring and control,and military communication.Unlike traditional communication methods,integrated networks are effective solutions because of their advantages in communication,remote sensing,monitoring,navigation,and all-weather seamless coverage.Monitoring,urban management,and other aspects will also have a wide range of applications.This study first builds an integrated network overlay model,and divides the satellite network into two categories:terrestrial network end users and satellite network end users.The energy efficiency,throughput,and signal-to-noise ratio(SINR)are deduced and analyzed.In this paper,we discuss the influence of various factors,such as transmit power,number of users,size of the protected area,and terminal position,on energy efficiency and SINR.A satellite-sharing scheme with a combination of the user location and an exclusion zone with high energy efficiency and anti-jamming capability is proposed to provide better communication quality for end users in integrated satellite and terrestrial networks.
文摘在网络威胁呈爆发式增长的当下,随着业务模式数字化重塑与业务持续性增长,银行业面临因网络安全防线持续扩大所导致的安全设备冗杂、安全运营任务繁重、实战能力不足等问题.对银行业金融机构在安全运营中所面临的挑战进行分析,提出了融合平战一体化安全运营机制的银行业DAO(defence,ability and operation)数字化安全运营体系,重点研究纵深化防护基础、原子化能力中枢、数字化运营总台3层次架构,以及针对常态化、高强度、无间断防护目标的平战一体机制实施路径.