To explore new light-weight integrated thermal protection system panel configuration and gain good insight into the responses mechanism,heat transfer and structural field analysis for one single-layer and four double-...To explore new light-weight integrated thermal protection system panel configuration and gain good insight into the responses mechanism,heat transfer and structural field analysis for one single-layer and four double-layer corrugated core panels were performed. The obtained the temperature,buckling,stress and deflection responses were compared,and the deflection and stress distributions as well as thermal buckling mode at the time were discussed for the considered configurations when the temperature difference between the top and bottom face sheet was maximum. The results demonstrated that the non-orthogonal and hat-stiffened double-layer structures provide superior performance to resist thermal buckling deformation in comparison with other configurations. The useful information is provided for the forthcoming optimization in which thermal buckling is considered as critical design driver.展开更多
一体化热防护结构通常处于严酷的非稳态热环境,热载荷作用的时间效应(即瞬态热效应)明显.为了避免瞬态热分析的巨大计算消耗,以往的一体化热防护结构优化设计研究通常将瞬态传热等效为相同热边界条件下的稳态传热,将稳态传热分析的温度...一体化热防护结构通常处于严酷的非稳态热环境,热载荷作用的时间效应(即瞬态热效应)明显.为了避免瞬态热分析的巨大计算消耗,以往的一体化热防护结构优化设计研究通常将瞬态传热等效为相同热边界条件下的稳态传热,将稳态传热分析的温度场作为设计热载荷.然而,已有的研究表明稳态传热无法准确等效瞬态传热的作用效果,瞬态热效应对结构设计结果具有重要影响.文章研究了考虑瞬态热效应的一体化热防护结构优化设计问题,建立一种考虑瞬态温度和应力约束的一体化热防护结构拓扑优化方法.该方法以SIMP(solid isotropic material with penalization)法为基础,构建两种针对一体化热防护结构的热弹性结构拓扑优化模型:(1)考虑材料体积分数、最大应力和底面最大温度约束,以最小化结构应变能为目标的刚度设计模型;(2)考虑最大应力和底面最大温度约束,以最小化材料体积分数为目标的轻量化设计模型.通过求解瞬态热力耦合方程获得结构的热力耦合静力分析结果;通过响应量在空间和时间域的凝聚积分函数表征结构响应在时域内的最大值,并以此构建相应的约束和目标函数;采用伴随法推导约束和目标函数的灵敏度表达式.通过3个数值算例验证了本方法的有效性.数值算例结果表明,在瞬态传热条件下,本方法能够准确反映瞬态热效应对一体化热防护结构设计结果的影响;相比于基于稳态热分析的设计结果,考虑瞬态热效应的设计结果具有更优的性能.展开更多
To eliminate anomalies and improve the performance of a space station remote manipulator(SSRM) used in a dynamically changeable thermal environment, we analyze the thermodynamic behavior of an SSRM that considers an i...To eliminate anomalies and improve the performance of a space station remote manipulator(SSRM) used in a dynamically changeable thermal environment, we analyze the thermodynamic behavior of an SSRM that considers an integrated thermal protection system(ITPS). Solar radiative heat gain and loss become equally significant as conductive heat transfers through the interior of the SSRM on orbit. A thermodynamic model of the SSRM with a sandwich ITPS structure is established on the coupling between harmonic drive and changeable thermal environment. A motion precision is proposed to evaluate thermodynamic behavior under continuously changeable thermal circumstances. Simulation results indicate that the ITPS with a corrugated sandwich structure reduces the maximum amplitude of angular position errors to 41.6%, which helps improve the motion precision of the SSRM. The feasible regions for the SSRM in the Low Earth Orbit(LEO) and Geostationary Earth Orbit(GEO) are analyzed, which shows that the proportion of feasible region in LEO is significantly larger than that in GEO.展开更多
基金Sponsored by the National Natural Science Foundation of China(Grant No.11102054)Postdoctoral Science-research Developmental Foundation of Heilongjiang Province(Grant No.LBH-Q12101)the Fundamental Research Funds for the Central Universities(Grant No.HIT.NSRIF.2014026)
文摘To explore new light-weight integrated thermal protection system panel configuration and gain good insight into the responses mechanism,heat transfer and structural field analysis for one single-layer and four double-layer corrugated core panels were performed. The obtained the temperature,buckling,stress and deflection responses were compared,and the deflection and stress distributions as well as thermal buckling mode at the time were discussed for the considered configurations when the temperature difference between the top and bottom face sheet was maximum. The results demonstrated that the non-orthogonal and hat-stiffened double-layer structures provide superior performance to resist thermal buckling deformation in comparison with other configurations. The useful information is provided for the forthcoming optimization in which thermal buckling is considered as critical design driver.
文摘一体化热防护结构通常处于严酷的非稳态热环境,热载荷作用的时间效应(即瞬态热效应)明显.为了避免瞬态热分析的巨大计算消耗,以往的一体化热防护结构优化设计研究通常将瞬态传热等效为相同热边界条件下的稳态传热,将稳态传热分析的温度场作为设计热载荷.然而,已有的研究表明稳态传热无法准确等效瞬态传热的作用效果,瞬态热效应对结构设计结果具有重要影响.文章研究了考虑瞬态热效应的一体化热防护结构优化设计问题,建立一种考虑瞬态温度和应力约束的一体化热防护结构拓扑优化方法.该方法以SIMP(solid isotropic material with penalization)法为基础,构建两种针对一体化热防护结构的热弹性结构拓扑优化模型:(1)考虑材料体积分数、最大应力和底面最大温度约束,以最小化结构应变能为目标的刚度设计模型;(2)考虑最大应力和底面最大温度约束,以最小化材料体积分数为目标的轻量化设计模型.通过求解瞬态热力耦合方程获得结构的热力耦合静力分析结果;通过响应量在空间和时间域的凝聚积分函数表征结构响应在时域内的最大值,并以此构建相应的约束和目标函数;采用伴随法推导约束和目标函数的灵敏度表达式.通过3个数值算例验证了本方法的有效性.数值算例结果表明,在瞬态传热条件下,本方法能够准确反映瞬态热效应对一体化热防护结构设计结果的影响;相比于基于稳态热分析的设计结果,考虑瞬态热效应的设计结果具有更优的性能.
基金supported by the National Natural Science Foundation of China(Grant No.11272171)Education Ministry Doctoral Fund of China(Grant No.20120002110070)
文摘To eliminate anomalies and improve the performance of a space station remote manipulator(SSRM) used in a dynamically changeable thermal environment, we analyze the thermodynamic behavior of an SSRM that considers an integrated thermal protection system(ITPS). Solar radiative heat gain and loss become equally significant as conductive heat transfers through the interior of the SSRM on orbit. A thermodynamic model of the SSRM with a sandwich ITPS structure is established on the coupling between harmonic drive and changeable thermal environment. A motion precision is proposed to evaluate thermodynamic behavior under continuously changeable thermal circumstances. Simulation results indicate that the ITPS with a corrugated sandwich structure reduces the maximum amplitude of angular position errors to 41.6%, which helps improve the motion precision of the SSRM. The feasible regions for the SSRM in the Low Earth Orbit(LEO) and Geostationary Earth Orbit(GEO) are analyzed, which shows that the proportion of feasible region in LEO is significantly larger than that in GEO.