Within the last decade, substantial progress has been achieved in the management of centralized water reticulation in Zambia. Characterized by diversified fiscal resourcing, concurrent institutional restructuring and ...Within the last decade, substantial progress has been achieved in the management of centralized water reticulation in Zambia. Characterized by diversified fiscal resourcing, concurrent institutional restructuring and introduction of new players in water governance, the water sector is set to achieve improved reliability on sustainable grounds. However, the threat of underground water pollution resulting from increased urbanization besides the unreliable energy sector presents new challenges for the current urban water. In effect, urban areas are affected by chronic water rationing creating public stress and insecurity which impacts domestic development. While the course of development has meant investment in the extension and expansion of water infrastructure in Zambia, alternative urban water resources are being sought to address challenges of traditional water systems globally. This paper therefore attempts to make a case for the modernization of Rooftop Rainwater Harvesting (RRWH) as an augmenting water resource in the Zambian urban housing sector. Here—in, it is identified as a Low Impact Development technology within the Integrated Urban Water Management framework currently being forged by local water. Based on a desktop literature survey and online questionnaire survey, an argument to support the development of RRWH in Zambia was developed. While literature survey results revealed evidence of economic loss and a growing compromise to public health resulting from inconsistent water supply in the study area of Lusaka city, the online questionnaire survey depicted significant domestic stress due to erratic water supply. Results confirmed that at one time residents observed an average of eight hours of power blackouts which effectively induced water disruption forcing homeowners to engage in various water storage methods which in turn are costly on domestic time, health and finances. A retrospective discussion based on both survey results attempts to present benefits and opportunities of urban RRWH to water sector stakeholders providing recommendations towards the mainstreaming of the practice in Zambia.展开更多
Integrated urban water management (IUWM) is a useful tool that can be used to alleviate water resource shortages in developing regions like Macao, where 98% of the raw water comes from China's Mainland. In Macao...Integrated urban water management (IUWM) is a useful tool that can be used to alleviate water resource shortages in developing regions like Macao, where 98% of the raw water comes from China's Mainland. In Macao, scarce water resources deteriorate rapidly in emergency situations, such as accidental chemical spills upstream of the supply reservoir or salty tides. During these times, only the water from the two freshwater reservoirs in Macao can be used. In this study, we developed urban water management optimization models that integrated the raw water supply from the two reservoirs with various proposed governmental policies (wastewater reuse, rainwater collection, and water saving). We then determined how various water resource strategies would influence the urban water supply in Macao in emergency situations. Our results showed that, without imported raw water, the water supply from only the two Macao reservoirs would last for 7.95 days. However, when all the government policies were included in the model, the supply could be extended to 13.79 days. Out of the three non-conventional water resources, wastewater reuse is the most beneficial for increasing the Macao water supply, and rainwater collection also has great potential.展开更多
The growing water stress both in terms of water scarcity and quality deterioration promotes the development of reclaimed water as a new water resource use. This paper reviewed wastewater reuse practices in China, and ...The growing water stress both in terms of water scarcity and quality deterioration promotes the development of reclaimed water as a new water resource use. This paper reviewed wastewater reuse practices in China, and the opportunities and challenges of expanding reclaimed water use were analyzed. Rapid urbanization with the increasing of water demand and wastewater discharge provides an opportunity for wastewater reuse. The vast amount of wastewater discharge and low reclaimed water production mean that wastewater reuse still has a great potential in China. Many environmental and economic benefits and successful reclamation technologies also provide opportunities for wastewater reuse. In addition, the overall strategy in China is also encouraging for wastewater reuse. In the beginning stage of wastewater reclamation and reuse, there are many significant challenges to expand wastewater reuse in China including slow pace in adopting urban wastewater reuse programs, the establishment of integrated water resources management framework and guidelines for wastewater reuse programs, incoherent water quality requirements, the limited commercial development of reclaimed water and the strengthening of public awareness and cooperation among stakeholders.展开更多
文摘Within the last decade, substantial progress has been achieved in the management of centralized water reticulation in Zambia. Characterized by diversified fiscal resourcing, concurrent institutional restructuring and introduction of new players in water governance, the water sector is set to achieve improved reliability on sustainable grounds. However, the threat of underground water pollution resulting from increased urbanization besides the unreliable energy sector presents new challenges for the current urban water. In effect, urban areas are affected by chronic water rationing creating public stress and insecurity which impacts domestic development. While the course of development has meant investment in the extension and expansion of water infrastructure in Zambia, alternative urban water resources are being sought to address challenges of traditional water systems globally. This paper therefore attempts to make a case for the modernization of Rooftop Rainwater Harvesting (RRWH) as an augmenting water resource in the Zambian urban housing sector. Here—in, it is identified as a Low Impact Development technology within the Integrated Urban Water Management framework currently being forged by local water. Based on a desktop literature survey and online questionnaire survey, an argument to support the development of RRWH in Zambia was developed. While literature survey results revealed evidence of economic loss and a growing compromise to public health resulting from inconsistent water supply in the study area of Lusaka city, the online questionnaire survey depicted significant domestic stress due to erratic water supply. Results confirmed that at one time residents observed an average of eight hours of power blackouts which effectively induced water disruption forcing homeowners to engage in various water storage methods which in turn are costly on domestic time, health and finances. A retrospective discussion based on both survey results attempts to present benefits and opportunities of urban RRWH to water sector stakeholders providing recommendations towards the mainstreaming of the practice in Zambia.
基金supported by the Fundo para lo Desenvolvimento das Ciências e da Tecnologia (FDCT), under Grant No. FDCT/069/2014/A2the Research Committee of the University of Macao, under Grant No MYRG072(Y1-L2)-FST13-LIC
文摘Integrated urban water management (IUWM) is a useful tool that can be used to alleviate water resource shortages in developing regions like Macao, where 98% of the raw water comes from China's Mainland. In Macao, scarce water resources deteriorate rapidly in emergency situations, such as accidental chemical spills upstream of the supply reservoir or salty tides. During these times, only the water from the two freshwater reservoirs in Macao can be used. In this study, we developed urban water management optimization models that integrated the raw water supply from the two reservoirs with various proposed governmental policies (wastewater reuse, rainwater collection, and water saving). We then determined how various water resource strategies would influence the urban water supply in Macao in emergency situations. Our results showed that, without imported raw water, the water supply from only the two Macao reservoirs would last for 7.95 days. However, when all the government policies were included in the model, the supply could be extended to 13.79 days. Out of the three non-conventional water resources, wastewater reuse is the most beneficial for increasing the Macao water supply, and rainwater collection also has great potential.
基金supported by the National Natural Science Foundation of China(No.41271501)
文摘The growing water stress both in terms of water scarcity and quality deterioration promotes the development of reclaimed water as a new water resource use. This paper reviewed wastewater reuse practices in China, and the opportunities and challenges of expanding reclaimed water use were analyzed. Rapid urbanization with the increasing of water demand and wastewater discharge provides an opportunity for wastewater reuse. The vast amount of wastewater discharge and low reclaimed water production mean that wastewater reuse still has a great potential in China. Many environmental and economic benefits and successful reclamation technologies also provide opportunities for wastewater reuse. In addition, the overall strategy in China is also encouraging for wastewater reuse. In the beginning stage of wastewater reclamation and reuse, there are many significant challenges to expand wastewater reuse in China including slow pace in adopting urban wastewater reuse programs, the establishment of integrated water resources management framework and guidelines for wastewater reuse programs, incoherent water quality requirements, the limited commercial development of reclaimed water and the strengthening of public awareness and cooperation among stakeholders.