Hot dry rock(HDR)is rich in reserve,widely distributed,green,low-carbon,and has broad development potential and prospects.In this paper,a distributionally robust optimization(DRO)scheduling model for a regionally inte...Hot dry rock(HDR)is rich in reserve,widely distributed,green,low-carbon,and has broad development potential and prospects.In this paper,a distributionally robust optimization(DRO)scheduling model for a regionally integrated energy system(RIES)considering HDR co-generation is proposed.First,the HDR-enhanced geothermal system(HDR-EGS)is introduced into the RIES.HDR-EGS realizes the thermoelectric decoupling of combined heat and power(CHP)through coordinated operation with the regional power grid and the regional heat grid,which enhances the system wind power(WP)feed-in space.Secondly,peak-hour loads are shifted using price demand response guidance in the context of time-of-day pricing.Finally,the optimization objective is established to minimize the total cost in the RIES scheduling cycle and construct a DRO scheduling model for RIES with HDR-EGS.By simulating a real small-scale RIES,the results show that HDR-EGS can effectively promote WP consumption and reduce the operating cost of the system.展开更多
Integrated energy systems(IESs)can improve energy efficiency and reduce carbon emissions,essential for achieving peak carbon emissions and carbon neutrality.This study investigated the characteristics of the CHP model...Integrated energy systems(IESs)can improve energy efficiency and reduce carbon emissions,essential for achieving peak carbon emissions and carbon neutrality.This study investigated the characteristics of the CHP model considering P2G and carbon capture systems,and a two-stage robust optimization model of the electricity-heat-gascold integrated energy system was developed.First,a CHP model considering the P2G and carbon capture system was established,and the electric-thermal coupling characteristics and P2G capacity constraints of the model were derived,which proved that the model could weaken the electric-thermal coupling characteristics,increase the electric power regulation range,and reduce carbon emissions.Subsequently,a two-stage robust optimal scheduling model of an IES was constructed,in which the objective function in the day-ahead scheduling stage was to minimize the start-up and shutdown costs.The objective function in the real-time scheduling stage was to minimize the equipment operating costs,carbon emission costs,wind curtailment,and solar curtailment costs,considering multiple uncertainties.Finally,after the objective function is linearized with a ψ-piecewise method,the model is solved based on the C&CG algorithm.Simulation results show that the proposed model can effectively absorb renewable energy and reduce the total cost of the system.展开更多
The economic operation of integrated energy system(IES)faces new challenges such as multi-timescale characteristics of heterogeneous energy sources,and cooperative operation of hybrid energy storage system(HESS).To th...The economic operation of integrated energy system(IES)faces new challenges such as multi-timescale characteristics of heterogeneous energy sources,and cooperative operation of hybrid energy storage system(HESS).To this end,this paper investigates the multi-timescale rolling opti-mization problem for IES integrated with HESS.Firstly,the architecture of IES with HESS is established,a comparative analysis is conducted to evaluate the advantages of the HESS over a single energy storage system(SESS)in stabilizing power fluctuations.Secondly,the dayahead and real-time scheduling cost functions of IES are established,the day-ahead scheduling mainly depends on operation costs of the components in IES,the real-time optimal scheduling adopts the Lya-punov optimization method to schedule the battery and hydrogen energy storage in each time slot,so as to minimize the real-time average scheduling operation cost,and the problem of day-ahead and real-time scheduling error,which caused by the uncertainty of the energy storage is solved by online optimization.Finally,the proposed model is verified to reduce the scheduling operation cost and the dispatching error by performing an arithmetic example analysis of the IES in Shanghai,which provides a reference for the safe and stable operation of the IES.展开更多
From the perspective of a community energy operator,a two-stage optimal scheduling model of a community integrated energy system is proposed by integrating information on controllable loads.The day-ahead scheduling an...From the perspective of a community energy operator,a two-stage optimal scheduling model of a community integrated energy system is proposed by integrating information on controllable loads.The day-ahead scheduling analyzes whether various controllable loads participate in the optimization and investigates the impact of their responses on the operating economy of the community integrated energy system(IES)before and after;the intra-day scheduling proposes a two-stage rolling optimization model based on the day-ahead scheduling scheme,taking into account the fluctuation of wind turbine output and load within a short period of time and according to the different response rates of heat and cooling power,and solves the adjusted output of each controllable device.The simulation results show that the optimal scheduling of controllable loads effectively reduces the comprehensive operating costs of community IES;the two-stage optimal scheduling model can meet the energy demand of customers while effectively and timely suppressing the random fluctuations on both sides of the source and load during the intra-day stage,realizing the economic and smooth operation of IES.展开更多
Addressing the insufficiency in down-regulation leeway within integrated energy systems stemming from the erratic and volatile nature of wind and solar renewable energy generation,this study focuses on formulating a c...Addressing the insufficiency in down-regulation leeway within integrated energy systems stemming from the erratic and volatile nature of wind and solar renewable energy generation,this study focuses on formulating a coordinated strategy involving the carbon capture unit of the integrated energy system and the resources on the load storage side.A scheduling model is devised that takes into account the confidence interval associated with renewable energy generation,with the overarching goal of optimizing the system for low-carbon operation.To begin with,an in-depth analysis is conducted on the temporal energy-shifting attributes and the low-carbon modulation mechanisms exhibited by the source-side carbon capture power plant within the context of integrated and adaptable operational paradigms.Drawing from this analysis,a model is devised to represent the adjustable resources on the charge-storage side,predicated on the principles of electro-thermal coupling within the energy system.Subsequently,the dissimilarities in the confidence intervals of renewable energy generation are considered,leading to the proposition of a flexible upper threshold for the confidence interval.Building on this,a low-carbon dispatch model is established for the integrated energy system,factoring in the margin allowed by the adjustable resources.In the final phase,a simulation is performed on a regional electric heating integrated energy system.This simulation seeks to assess the impact of source-load-storage coordination on the system’s low-carbon operation across various scenarios of reduction margin reserves.The findings underscore that the proactive scheduling model incorporating confidence interval considerations for reduction margin reserves effectively mitigates the uncertainties tied to renewable energy generation.Through harmonized orchestration of source,load,and storage elements,it expands the utilization scope for renewable energy,safeguards the economic efficiency of system operations under low-carbon emission conditions,and empirically validates the soundness and efficacy of the proposed approach.展开更多
To better reduce the carbon emissions of a park-integrated energy system(PIES),optimize the comprehensive operating cost,and smooth the load curve,a source-load flexible response model based on the comprehensive evalu...To better reduce the carbon emissions of a park-integrated energy system(PIES),optimize the comprehensive operating cost,and smooth the load curve,a source-load flexible response model based on the comprehensive evaluation index is proposed.Firstly,a source-load flexible response model is proposed under the stepped carbon trading mechanism;the organic Rankine cycle is introduced into the source-side to construct a flexible response model with traditional combined heat and power(CHP)unit and electric boiler to realize the flexible response of CHP to load;and the load-side categorizes loads into transferable,interruptible,and substitutable loads according to the load characteristics and establishes a comprehensive demand response model.Secondly,the analytic network process(ANP)considers the linkages between indicators and allows decision-makers to consider the interactions of elements in a complex dynamic system,resulting in more realistic indicator assignment values.Considering the economy,energy efficiency,and environment,the PIES optimization operation model based on the ANP comprehensive evaluation index is constructed to optimize the system operation comprehensively.Finally,the CPLEX solver inMATLABwas employed to solve the problem.The results of the example showthat the source-load flexible response model proposed in this paper reduces the operating cost of the system by 29.90%,improves the comprehensive utilization rate by 15.00%,and reduces the carbon emission by 26.98%,which effectively enhances the system’s economy and low carbon,and the comprehensive evaluation index based on the ANP reaches 0.95,which takes into account the economy,energy efficiency,and the environment,and is more superior than the single evaluation index.展开更多
In recent years,primary energy consumption in China’s urban areas has increased rapidly,facing the problems of extensive use of energy,high energy consumption and insufficient intensified use of energy resources.Impr...In recent years,primary energy consumption in China’s urban areas has increased rapidly,facing the problems of extensive use of energy,high energy consumption and insufficient intensified use of energy resources.Improving multienergy supply,increasing the proportion of clean energy and integrated energy efficiency are the main goals of urban development.The integrated energy system with multi-functional synergy and open trading will become one of the new directions for the development of new urban energy systems.This paper summarizes the main problems faced by the current towns and the characteristics of the new urban energy system,analyzes the development of new urban energy system from three aspects including energy interconnection hub infrastructure construction,energy management platform construction and energy value sharing,and forecasts the future development direction of new urban energy systems.展开更多
Owing to increasing environmental concerns and resource scarcity, integrated energy system shave become widely used in communities. Rural energy systems, as one of the important links of the energy network in China, s...Owing to increasing environmental concerns and resource scarcity, integrated energy system shave become widely used in communities. Rural energy systems, as one of the important links of the energy network in China, suffer from low energy efficiency and weak infrastructure. Therefore, it is particularly important to increase the proportion of electricity consumption and build an integrated energy system for rural electrification in China(IESREIC) with a rural distribution network as the core, in line with national conditions. In this study, by analyzing the Chinese regional differences and natural resource endowments, the development characteristics of the IESREIC are summarized. Then, according to the existing rural energy problems, key technologies are proposed for the IESREIC, such as those for planning and operation, value sharing, infrastructure, and a management and control platform. Finally, IESREIC demonstration projects and business models are introduced for agricultural production, rural industrial systems, and rural life. The purpose is to propose research concepts for the IESREIC, provide suggestions for the development of rural energy, and provide a reference for the construction of rural energy systems in countries with characteristics similar to those of China.展开更多
An integrated energy service company in an industrial park or commercial building is responsible for managing all energy sources in their local region, including electricity, water, gas, heating, and cooling. To reduc...An integrated energy service company in an industrial park or commercial building is responsible for managing all energy sources in their local region, including electricity, water, gas, heating, and cooling. To reduce energy wastage and increase energy utilization, it is necessary to perform efficiency analyses and diagnoses on integrated energy systems(IESs). However, the integrated energy data necessary for energy efficiency analyses and diagnoses come from a wide variety of instruments, each of which uses different transmission protocols and data formats. This makes it challenging to handle energy-flow data in a unified manner. Thus, we have constructed a unified model for diagnosing energy usage abnormalities in IESs. Using this model, the data are divided into working days and non-working days, and benchmark values are calculated after the data have been weighted to enable unified analysis of several types of energy data. The energy-flow data may then be observed, managed, and compared in all aspects to monitor sudden changes in energy usage and energy wastage. The abnormal data identified and selected by the unified model are then subjected to big-data analysis using technical management tools, enabling the detection of user problems such as abnormalities pertaining to acquisition device, metering, and energy usage. This model facilitates accurate metering of energy data and improves energy efficiency. The study has significant implications in terms of fulfilling the energy saving.展开更多
In the electrical energy transformation process,the grid-level energy storage system plays an essential role in balancing power generation and utilization.Batteries have considerable potential for application to grid-...In the electrical energy transformation process,the grid-level energy storage system plays an essential role in balancing power generation and utilization.Batteries have considerable potential for application to grid-level energy storage systems because of their rapid response,modularization,and flexible installation.Among several battery technologies,lithium-ion batteries(LIBs)exhibit high energy efficiency,long cycle life,and relatively high energy density.In this perspective,the properties of LIBs,including their operation mechanism,battery design and construction,and advantages and disadvantages,have been analyzed in detail.Moreover,the performance of LIBs applied to grid-level energy storage systems is analyzed in terms of the following grid services:(1)frequency regulation;(2)peak shifting;(3)integration with renewable energy sources;and(4)power management.In addition,the challenges encountered in the application of LIBs are discussed and possible research directions aimed at overcoming these challenges are proposed to provide insight into the development of grid-level energy storage systems.展开更多
The integrated energy system(IES)is an important energy supply method for mitigating the energy crisis.A station-and-network–coordinated planning method for the IES,which considers the integrated demand responses(IDR...The integrated energy system(IES)is an important energy supply method for mitigating the energy crisis.A station-and-network–coordinated planning method for the IES,which considers the integrated demand responses(IDRs)of flexible loads,electric vehicles,and energy storage is proposed in this work.First,based on load substitution at the user side,an energy-station model considering the IDR is established.Then,based on the characteristics of the energy network,a collaborative planning model is established for the energy station and energy network of the IES,considering the comprehensive system investment,operation and maintenance,and clean energy shortage penalty costs,to minimize the total cost.This can help optimize the locations of the power lines and natural gas pipelines and the capacities of the equipment in an energy station.Finally,simulations are performed to demonstrate that the proposed planning method can help delay or reduce the construction of new lines and energy-station equipment,thereby reducing the investment required and improving the planning economics of the IES.展开更多
Integrated energy systems(lESs)represent a promising energy supply model within the energy internet.However,multi-energy flow coupling in the optimal configuration of IES results in a series of simplifications in the ...Integrated energy systems(lESs)represent a promising energy supply model within the energy internet.However,multi-energy flow coupling in the optimal configuration of IES results in a series of simplifications in the preliminary planning,affecting the cost,efficiency,and environmental performance of IES.A novel optimal planning method that considers the part-load characteristics and spatio-temporal synergistic effects of IES components is proposed to enable a rational design of the structure and size of IES.An extended energy hub model is introduced based on the“node of energy hub”concept by decomposing the IES into different types of energy equipment.Subsequently,a planning method is applied as a two-level optimization framework-the upper level is used to identify the type and size of the component,while the bottom level is used to optimize the operation strategy based on a typical day analysis method.The planning problem is solved using a two-stage evolutionary algorithm,combing the multiple-mutations adaptive genetic algorithm with an interior point optimization solver,to minimize the lifetime cost of the IES.Finally,the feasibility of the proposed planning method is demonstrated using a case study.The life cycle costs of the IES with and without consideration of the part-load characteristics of the components were$4.26 million and$4.15 million,respectively,in the case study.Moreover,ignoring the variation in component characteristics in the design stage resulted in an additional 11.57%expenditure due to an energy efficiency reduction under the off-design conditions.展开更多
An autonomous microgrid that runs on renewable energy sources is presented in this article.It has a supercon-ducting magnetic energy storage(SMES)device,wind energy-producing devices,and an energy storage battery.Howe...An autonomous microgrid that runs on renewable energy sources is presented in this article.It has a supercon-ducting magnetic energy storage(SMES)device,wind energy-producing devices,and an energy storage battery.However,because such microgrids are nonlinear and the energy they create varies with time,controlling and managing the energy inside them is a difficult issue.Fractional-order proportional integral(FOPI)controller is recommended for the current research to enhance a standalone microgrid’s energy management and performance.The suggested dedicated control for the SMES comprises two loops:the outer loop,which uses the FOPI to regulate the DC-link voltage,and the inner loop,responsible for regulating the SMES current,is constructed using the intelligent FOPI(iFOPI).The FOPI+iFOPI parameters are best developed using the dandelion optimizer(DO)approach to achieve the optimum performance.The suggested FOPI+iFOPI controller’s performance is contrasted with a conventional PI controller for variations in wind speed and microgrid load.The optimal FOPI+iFOPI controller manages the voltage and frequency of the load.The behavior of the microgrid as a reaction to step changes in load and wind speed was measured using the proposed controller.MATLAB simulations were used to evaluate the recommended system’s performance.The results of the simulations showed that throughout all interruptions,the recommended microgrid provided the load with AC power with a constant amplitude and frequency.In addition,the required load demand was accurately reduced.Furthermore,the microgrid functioned incredibly well despite SMES and varying wind speeds.Results obtained under identical conditions were compared with and without the best FOPI+iFOPI controller.When utilizing the optimal FOPI+iFOPI controller with SMES,it was found that the microgrid performed better than the microgrid without SMES.展开更多
Effective source-load prediction and reasonable dispatching are crucial to realize the economic and reliable operations of integrated energy systems(IESs).They can overcome the challenges introduced by the uncertainti...Effective source-load prediction and reasonable dispatching are crucial to realize the economic and reliable operations of integrated energy systems(IESs).They can overcome the challenges introduced by the uncertainties of new energies and various types of loads in the IES.Accordingly,a robust optimal dispatching method for the IES based on a robust economic model predictive control(REMPC)strategy considering source-load power interval prediction is proposed.First,an operation model of the IES is established,and an interval prediction model based on the bidirectional long short-term memory network optimized by beetle antenna search and bootstrap is formulated and applied to predict the photovoltaic power and the cooling,heating,and electrical loads.Then,an optimal dispatching scheme based on REMPC is devised for the IES.The source-load interval prediction results are used to improve the robustness of the REPMC and reduce the influence of source-load uncertainties on dispatching.An actual IES case is selected to conduct simulations;the results show that compared with other prediction techniques,the proposed method has higher prediction interval coverage probability and prediction interval normalized averaged width.Moreover,the operational cost of the IES is decreased by the REMPC strategy.With the devised dispatching scheme,the ability of the IES to handle the dispatching risk caused by prediction errors is enhanced.Improved dispatching robustness and operational economy are also achieved.展开更多
The coordinated optimization problem of the electricity-gas-heat integrated energy system(IES)has the characteristics of strong coupling,non-convexity,and nonlinearity.The centralized optimization method has a high co...The coordinated optimization problem of the electricity-gas-heat integrated energy system(IES)has the characteristics of strong coupling,non-convexity,and nonlinearity.The centralized optimization method has a high cost of communication and complex modeling.Meanwhile,the traditional numerical iterative solution cannot deal with uncertainty and solution efficiency,which is difficult to apply online.For the coordinated optimization problem of the electricity-gas-heat IES in this study,we constructed a model for the distributed IES with a dynamic distribution factor and transformed the centralized optimization problem into a distributed optimization problem in the multi-agent reinforcement learning environment using multi-agent deep deterministic policy gradient.Introducing the dynamic distribution factor allows the system to consider the impact of changes in real-time supply and demand on system optimization,dynamically coordinating different energy sources for complementary utilization and effectively improving the system economy.Compared with centralized optimization,the distributed model with multiple decision centers can achieve similar results while easing the pressure on system communication.The proposed method considers the dual uncertainty of renewable energy and load in the training.Compared with the traditional iterative solution method,it can better cope with uncertainty and realize real-time decision making of the system,which is conducive to the online application.Finally,we verify the effectiveness of the proposed method using an example of an IES coupled with three energy hub agents.展开更多
Integrated data and energy transfer(IDET)enables the electromagnetic waves to transmit wireless energy at the same time of data delivery for lowpower devices.In this paper,an energy harvesting modulation(EHM)assisted ...Integrated data and energy transfer(IDET)enables the electromagnetic waves to transmit wireless energy at the same time of data delivery for lowpower devices.In this paper,an energy harvesting modulation(EHM)assisted multi-user IDET system is studied,where all the received signals at the users are exploited for energy harvesting without the degradation of wireless data transfer(WDT)performance.The joint IDET performance is then analysed theoretically by conceiving a practical time-dependent wireless channel.With the aid of the AO based algorithm,the average effective data rate among users are maximized by ensuring the BER and the wireless energy transfer(WET)performance.Simulation results validate and evaluate the IDET performance of the EHM assisted system,which also demonstrates that the optimal number of user clusters and IDET time slots should be allocated,in order to improve the WET and WDT performance.展开更多
With the development of renewable energy technologies such as photovoltaics and wind power,it has become a research hotspot to improve the consumption rate of new energy and reduce energy costs through the deployment ...With the development of renewable energy technologies such as photovoltaics and wind power,it has become a research hotspot to improve the consumption rate of new energy and reduce energy costs through the deployment of energy storage.To solve the problem of the interests of different subjects in the operation of the energy storage power stations(ESS)and the integrated energy multi-microgrid alliance(IEMA),this paper proposes the optimization operation method of the energy storage power station and the IEMA based on the Stackelberg game.In the upper layer,ESS optimizes charging and discharging decisions through a dynamic pricing mechanism.In the lower layer,IEMA optimizes the output of various energy conversion coupled devices within the IEMA,as well as energy interaction and demand response(DR),based on the energy interaction prices provided by ESS.The results demonstrate that the optimization strategy proposed in this paper not only effectively balances the benefits of the IEMA and ESS but also enhances energy consumption rates and reduces IEMA energy costs.展开更多
With increasing reforms related to integrated energy systems(IESs),each energy subsystem,as a participant based on bounded rationality,significantly influences the optimal scheduling of the entire IES through mutual l...With increasing reforms related to integrated energy systems(IESs),each energy subsystem,as a participant based on bounded rationality,significantly influences the optimal scheduling of the entire IES through mutual learning and imitation.A reasonable multiagent joint operation strategy can help this system meet its low-carbon objectives.This paper proposes a bilayer low-carbon optimal operational strategy for an IES based on the Stackelberg master-slave game and multiagent joint operation.The studied IES includes cogeneration,power-to-gas,and carbon capture systems.Based on the Stackelberg master-slave game theory,sellers are used as leaders in the upper layer to set the prices of electricity and heat,while energy producers,energy storage providers,and load aggregators are used as followers in the lower layer to adjust the operational strategy of the system.An IES bilayer optimization model based on the Stackelberg master-slave game was developed.Finally,the Karush-Kuhn-Tucker(KKT)condition and linear relaxation technology are used to convert the bilayer game model to a single layer.CPLEX,which is a mathematical program solver,is used to solve the equilibrium problem and the carbon emission trading cost of the system when the benefits of each subject reach maximum and to analyze the impact of different carbon emission trading prices and growth rates on the operational strategy of the system.As an experimental demonstration,we simulated an IES coupled with an IEEE 39-node electrical grid system,a six-node heat network system,and a six-node gas network system.The simulation results confirm the effectiveness and feasibility of the proposed model.展开更多
The integrated energy systems,usually including electric energy,natural gas and thermal energy,play a pivotal role in the energy Internet project,which could improve the accommodation of renewable energy through multi...The integrated energy systems,usually including electric energy,natural gas and thermal energy,play a pivotal role in the energy Internet project,which could improve the accommodation of renewable energy through multienergy complementary ways.Focusing on the regional integrated energy system composed of electrical microgrid and natural gas network,a fault risk warning method based on the improved RelieF-softmax method is proposed in this paper.The raw data-set was first clustered by the K-maxmin method to improve the preference of the random sampling process in the RelieF algorithm,and thereby achieved a hierarchical and non-repeated sampling.Then,the improved RelieF algorithm is used to identify the feature vectors,calculate the feature weights,and select the preferred feature subset according to the initially set threshold.In addition,a correlation coefficient method is applied to reduce the feature subset,and further eliminate the redundant feature vectors to obtain the optimal feature subset.Finally,the softmax classifier is used to obtain the early warnings of the integrated energy system.Case studies are conducted on an integrated energy system in the south of China to demonstrate the accuracy of fault risk warning method proposed in this paper.展开更多
The combination of structural health monitoring and vibration control is of great importance to provide components of smart structures.While synthetic algorithms have been proposed,adaptive control that is compatible ...The combination of structural health monitoring and vibration control is of great importance to provide components of smart structures.While synthetic algorithms have been proposed,adaptive control that is compatible with changing conditions still needs to be used,and time-varying systems are required to be simultaneously estimated with the application of adaptive control.In this research,the identification of structural time-varying dynamic characteristics and optimized simple adaptive control are integrated.First,reduced variations of physical parameters are estimated online using the multiple forgetting factor recursive least squares(MFRLS)method.Then,the energy from the structural vibration is simultaneously specified to optimize the control force with the identified parameters to be operational.Optimization is also performed based on the probability density function of the energy under the seismic excitation at any time.Finally,the optimal control force is obtained by the simple adaptive control(SAC)algorithm and energy coefficient.A numerical example and benchmark structure are employed to investigate the efficiency of the proposed approach.The simulation results revealed the effectiveness of the integrated online identification and optimal adaptive control in systems.展开更多
基金King Saud University for funding this research through the Researchers Supporting Program Number(RSPD2024R704),King Saud University,Riyadh,Saudi Arabia.
文摘Hot dry rock(HDR)is rich in reserve,widely distributed,green,low-carbon,and has broad development potential and prospects.In this paper,a distributionally robust optimization(DRO)scheduling model for a regionally integrated energy system(RIES)considering HDR co-generation is proposed.First,the HDR-enhanced geothermal system(HDR-EGS)is introduced into the RIES.HDR-EGS realizes the thermoelectric decoupling of combined heat and power(CHP)through coordinated operation with the regional power grid and the regional heat grid,which enhances the system wind power(WP)feed-in space.Secondly,peak-hour loads are shifted using price demand response guidance in the context of time-of-day pricing.Finally,the optimization objective is established to minimize the total cost in the RIES scheduling cycle and construct a DRO scheduling model for RIES with HDR-EGS.By simulating a real small-scale RIES,the results show that HDR-EGS can effectively promote WP consumption and reduce the operating cost of the system.
基金supported by the National Natural Science Foundation of China(Grant number 51977154)。
文摘Integrated energy systems(IESs)can improve energy efficiency and reduce carbon emissions,essential for achieving peak carbon emissions and carbon neutrality.This study investigated the characteristics of the CHP model considering P2G and carbon capture systems,and a two-stage robust optimization model of the electricity-heat-gascold integrated energy system was developed.First,a CHP model considering the P2G and carbon capture system was established,and the electric-thermal coupling characteristics and P2G capacity constraints of the model were derived,which proved that the model could weaken the electric-thermal coupling characteristics,increase the electric power regulation range,and reduce carbon emissions.Subsequently,a two-stage robust optimal scheduling model of an IES was constructed,in which the objective function in the day-ahead scheduling stage was to minimize the start-up and shutdown costs.The objective function in the real-time scheduling stage was to minimize the equipment operating costs,carbon emission costs,wind curtailment,and solar curtailment costs,considering multiple uncertainties.Finally,after the objective function is linearized with a ψ-piecewise method,the model is solved based on the C&CG algorithm.Simulation results show that the proposed model can effectively absorb renewable energy and reduce the total cost of the system.
基金supported by the National Natural Science Foundation of China(No.12171145)。
文摘The economic operation of integrated energy system(IES)faces new challenges such as multi-timescale characteristics of heterogeneous energy sources,and cooperative operation of hybrid energy storage system(HESS).To this end,this paper investigates the multi-timescale rolling opti-mization problem for IES integrated with HESS.Firstly,the architecture of IES with HESS is established,a comparative analysis is conducted to evaluate the advantages of the HESS over a single energy storage system(SESS)in stabilizing power fluctuations.Secondly,the dayahead and real-time scheduling cost functions of IES are established,the day-ahead scheduling mainly depends on operation costs of the components in IES,the real-time optimal scheduling adopts the Lya-punov optimization method to schedule the battery and hydrogen energy storage in each time slot,so as to minimize the real-time average scheduling operation cost,and the problem of day-ahead and real-time scheduling error,which caused by the uncertainty of the energy storage is solved by online optimization.Finally,the proposed model is verified to reduce the scheduling operation cost and the dispatching error by performing an arithmetic example analysis of the IES in Shanghai,which provides a reference for the safe and stable operation of the IES.
基金supported in part by the National Natural Science Foundation of China(51977127)Shanghai Municipal Science and Technology Commission(19020500800)“Shuguang Program”(20SG52)Shanghai Education Development Foundation and Shanghai Municipal Education Commission.
文摘From the perspective of a community energy operator,a two-stage optimal scheduling model of a community integrated energy system is proposed by integrating information on controllable loads.The day-ahead scheduling analyzes whether various controllable loads participate in the optimization and investigates the impact of their responses on the operating economy of the community integrated energy system(IES)before and after;the intra-day scheduling proposes a two-stage rolling optimization model based on the day-ahead scheduling scheme,taking into account the fluctuation of wind turbine output and load within a short period of time and according to the different response rates of heat and cooling power,and solves the adjusted output of each controllable device.The simulation results show that the optimal scheduling of controllable loads effectively reduces the comprehensive operating costs of community IES;the two-stage optimal scheduling model can meet the energy demand of customers while effectively and timely suppressing the random fluctuations on both sides of the source and load during the intra-day stage,realizing the economic and smooth operation of IES.
基金supported by the Science and Technology Project of State Grid Inner Mongolia East Power Co.,Ltd.:Research on Carbon Flow Apportionment and Assessment Methods for Distributed Energy under Dual Carbon Targets(52664K220004).
文摘Addressing the insufficiency in down-regulation leeway within integrated energy systems stemming from the erratic and volatile nature of wind and solar renewable energy generation,this study focuses on formulating a coordinated strategy involving the carbon capture unit of the integrated energy system and the resources on the load storage side.A scheduling model is devised that takes into account the confidence interval associated with renewable energy generation,with the overarching goal of optimizing the system for low-carbon operation.To begin with,an in-depth analysis is conducted on the temporal energy-shifting attributes and the low-carbon modulation mechanisms exhibited by the source-side carbon capture power plant within the context of integrated and adaptable operational paradigms.Drawing from this analysis,a model is devised to represent the adjustable resources on the charge-storage side,predicated on the principles of electro-thermal coupling within the energy system.Subsequently,the dissimilarities in the confidence intervals of renewable energy generation are considered,leading to the proposition of a flexible upper threshold for the confidence interval.Building on this,a low-carbon dispatch model is established for the integrated energy system,factoring in the margin allowed by the adjustable resources.In the final phase,a simulation is performed on a regional electric heating integrated energy system.This simulation seeks to assess the impact of source-load-storage coordination on the system’s low-carbon operation across various scenarios of reduction margin reserves.The findings underscore that the proactive scheduling model incorporating confidence interval considerations for reduction margin reserves effectively mitigates the uncertainties tied to renewable energy generation.Through harmonized orchestration of source,load,and storage elements,it expands the utilization scope for renewable energy,safeguards the economic efficiency of system operations under low-carbon emission conditions,and empirically validates the soundness and efficacy of the proposed approach.
文摘To better reduce the carbon emissions of a park-integrated energy system(PIES),optimize the comprehensive operating cost,and smooth the load curve,a source-load flexible response model based on the comprehensive evaluation index is proposed.Firstly,a source-load flexible response model is proposed under the stepped carbon trading mechanism;the organic Rankine cycle is introduced into the source-side to construct a flexible response model with traditional combined heat and power(CHP)unit and electric boiler to realize the flexible response of CHP to load;and the load-side categorizes loads into transferable,interruptible,and substitutable loads according to the load characteristics and establishes a comprehensive demand response model.Secondly,the analytic network process(ANP)considers the linkages between indicators and allows decision-makers to consider the interactions of elements in a complex dynamic system,resulting in more realistic indicator assignment values.Considering the economy,energy efficiency,and environment,the PIES optimization operation model based on the ANP comprehensive evaluation index is constructed to optimize the system operation comprehensively.Finally,the CPLEX solver inMATLABwas employed to solve the problem.The results of the example showthat the source-load flexible response model proposed in this paper reduces the operating cost of the system by 29.90%,improves the comprehensive utilization rate by 15.00%,and reduces the carbon emission by 26.98%,which effectively enhances the system’s economy and low carbon,and the comprehensive evaluation index based on the ANP reaches 0.95,which takes into account the economy,energy efficiency,and the environment,and is more superior than the single evaluation index.
基金supported by National Key R&D Program of China (No. 2018YFB0905000)Science and Technology Project of SGCC (SGTJDK00DWJS1800232)+1 种基金National Natural Science Foundation of China (51977141)State Grid Corporation of China project: “Research on Construction Technology of Integrated Energy System for Urban Multifunctional Groups” (SGTJJY00GHJS1900040)
文摘In recent years,primary energy consumption in China’s urban areas has increased rapidly,facing the problems of extensive use of energy,high energy consumption and insufficient intensified use of energy resources.Improving multienergy supply,increasing the proportion of clean energy and integrated energy efficiency are the main goals of urban development.The integrated energy system with multi-functional synergy and open trading will become one of the new directions for the development of new urban energy systems.This paper summarizes the main problems faced by the current towns and the characteristics of the new urban energy system,analyzes the development of new urban energy system from three aspects including energy interconnection hub infrastructure construction,energy management platform construction and energy value sharing,and forecasts the future development direction of new urban energy systems.
基金supported by the National Natural Science Foundation of China(No.51977141)headquarters technology project of State Grid Corporation of China(No.5400-202025208A-0-0-00)
文摘Owing to increasing environmental concerns and resource scarcity, integrated energy system shave become widely used in communities. Rural energy systems, as one of the important links of the energy network in China, suffer from low energy efficiency and weak infrastructure. Therefore, it is particularly important to increase the proportion of electricity consumption and build an integrated energy system for rural electrification in China(IESREIC) with a rural distribution network as the core, in line with national conditions. In this study, by analyzing the Chinese regional differences and natural resource endowments, the development characteristics of the IESREIC are summarized. Then, according to the existing rural energy problems, key technologies are proposed for the IESREIC, such as those for planning and operation, value sharing, infrastructure, and a management and control platform. Finally, IESREIC demonstration projects and business models are introduced for agricultural production, rural industrial systems, and rural life. The purpose is to propose research concepts for the IESREIC, provide suggestions for the development of rural energy, and provide a reference for the construction of rural energy systems in countries with characteristics similar to those of China.
基金supported by National Key Research and Development Program of China (No.2017YFB903304)the State Grid Science and Technology Program (Hybrid Simnlation Key Technology for Integrated Energy System and Platform Construction)
文摘An integrated energy service company in an industrial park or commercial building is responsible for managing all energy sources in their local region, including electricity, water, gas, heating, and cooling. To reduce energy wastage and increase energy utilization, it is necessary to perform efficiency analyses and diagnoses on integrated energy systems(IESs). However, the integrated energy data necessary for energy efficiency analyses and diagnoses come from a wide variety of instruments, each of which uses different transmission protocols and data formats. This makes it challenging to handle energy-flow data in a unified manner. Thus, we have constructed a unified model for diagnosing energy usage abnormalities in IESs. Using this model, the data are divided into working days and non-working days, and benchmark values are calculated after the data have been weighted to enable unified analysis of several types of energy data. The energy-flow data may then be observed, managed, and compared in all aspects to monitor sudden changes in energy usage and energy wastage. The abnormal data identified and selected by the unified model are then subjected to big-data analysis using technical management tools, enabling the detection of user problems such as abnormalities pertaining to acquisition device, metering, and energy usage. This model facilitates accurate metering of energy data and improves energy efficiency. The study has significant implications in terms of fulfilling the energy saving.
文摘In the electrical energy transformation process,the grid-level energy storage system plays an essential role in balancing power generation and utilization.Batteries have considerable potential for application to grid-level energy storage systems because of their rapid response,modularization,and flexible installation.Among several battery technologies,lithium-ion batteries(LIBs)exhibit high energy efficiency,long cycle life,and relatively high energy density.In this perspective,the properties of LIBs,including their operation mechanism,battery design and construction,and advantages and disadvantages,have been analyzed in detail.Moreover,the performance of LIBs applied to grid-level energy storage systems is analyzed in terms of the following grid services:(1)frequency regulation;(2)peak shifting;(3)integration with renewable energy sources;and(4)power management.In addition,the challenges encountered in the application of LIBs are discussed and possible research directions aimed at overcoming these challenges are proposed to provide insight into the development of grid-level energy storage systems.
基金supported in part by the National Key R&D Program of China(2018YFB0905000)the Science and Technology Project of the State Grid Corporation of China(SGTJDK00DWJS1800232)
文摘The integrated energy system(IES)is an important energy supply method for mitigating the energy crisis.A station-and-network–coordinated planning method for the IES,which considers the integrated demand responses(IDRs)of flexible loads,electric vehicles,and energy storage is proposed in this work.First,based on load substitution at the user side,an energy-station model considering the IDR is established.Then,based on the characteristics of the energy network,a collaborative planning model is established for the energy station and energy network of the IES,considering the comprehensive system investment,operation and maintenance,and clean energy shortage penalty costs,to minimize the total cost.This can help optimize the locations of the power lines and natural gas pipelines and the capacities of the equipment in an energy station.Finally,simulations are performed to demonstrate that the proposed planning method can help delay or reduce the construction of new lines and energy-station equipment,thereby reducing the investment required and improving the planning economics of the IES.
基金the National Natural Science Foundation of China(Grant No.51821004)supported by the Major Program of the National Natural Science Foundation of China(Grant No.52090062)The author Chengzhou Li also thank the China Scholarship Council(CSC)for the financial support.
文摘Integrated energy systems(lESs)represent a promising energy supply model within the energy internet.However,multi-energy flow coupling in the optimal configuration of IES results in a series of simplifications in the preliminary planning,affecting the cost,efficiency,and environmental performance of IES.A novel optimal planning method that considers the part-load characteristics and spatio-temporal synergistic effects of IES components is proposed to enable a rational design of the structure and size of IES.An extended energy hub model is introduced based on the“node of energy hub”concept by decomposing the IES into different types of energy equipment.Subsequently,a planning method is applied as a two-level optimization framework-the upper level is used to identify the type and size of the component,while the bottom level is used to optimize the operation strategy based on a typical day analysis method.The planning problem is solved using a two-stage evolutionary algorithm,combing the multiple-mutations adaptive genetic algorithm with an interior point optimization solver,to minimize the lifetime cost of the IES.Finally,the feasibility of the proposed planning method is demonstrated using a case study.The life cycle costs of the IES with and without consideration of the part-load characteristics of the components were$4.26 million and$4.15 million,respectively,in the case study.Moreover,ignoring the variation in component characteristics in the design stage resulted in an additional 11.57%expenditure due to an energy efficiency reduction under the off-design conditions.
基金This research was funded by the Deputyship for Research and Innovation,Ministry of Education,Saudi Arabia,through the University of Tabuk,Grant Number S-1443-0123.
文摘An autonomous microgrid that runs on renewable energy sources is presented in this article.It has a supercon-ducting magnetic energy storage(SMES)device,wind energy-producing devices,and an energy storage battery.However,because such microgrids are nonlinear and the energy they create varies with time,controlling and managing the energy inside them is a difficult issue.Fractional-order proportional integral(FOPI)controller is recommended for the current research to enhance a standalone microgrid’s energy management and performance.The suggested dedicated control for the SMES comprises two loops:the outer loop,which uses the FOPI to regulate the DC-link voltage,and the inner loop,responsible for regulating the SMES current,is constructed using the intelligent FOPI(iFOPI).The FOPI+iFOPI parameters are best developed using the dandelion optimizer(DO)approach to achieve the optimum performance.The suggested FOPI+iFOPI controller’s performance is contrasted with a conventional PI controller for variations in wind speed and microgrid load.The optimal FOPI+iFOPI controller manages the voltage and frequency of the load.The behavior of the microgrid as a reaction to step changes in load and wind speed was measured using the proposed controller.MATLAB simulations were used to evaluate the recommended system’s performance.The results of the simulations showed that throughout all interruptions,the recommended microgrid provided the load with AC power with a constant amplitude and frequency.In addition,the required load demand was accurately reduced.Furthermore,the microgrid functioned incredibly well despite SMES and varying wind speeds.Results obtained under identical conditions were compared with and without the best FOPI+iFOPI controller.When utilizing the optimal FOPI+iFOPI controller with SMES,it was found that the microgrid performed better than the microgrid without SMES.
基金supported by the National Key Research and Development Project of China(2018YFE0122200).
文摘Effective source-load prediction and reasonable dispatching are crucial to realize the economic and reliable operations of integrated energy systems(IESs).They can overcome the challenges introduced by the uncertainties of new energies and various types of loads in the IES.Accordingly,a robust optimal dispatching method for the IES based on a robust economic model predictive control(REMPC)strategy considering source-load power interval prediction is proposed.First,an operation model of the IES is established,and an interval prediction model based on the bidirectional long short-term memory network optimized by beetle antenna search and bootstrap is formulated and applied to predict the photovoltaic power and the cooling,heating,and electrical loads.Then,an optimal dispatching scheme based on REMPC is devised for the IES.The source-load interval prediction results are used to improve the robustness of the REPMC and reduce the influence of source-load uncertainties on dispatching.An actual IES case is selected to conduct simulations;the results show that compared with other prediction techniques,the proposed method has higher prediction interval coverage probability and prediction interval normalized averaged width.Moreover,the operational cost of the IES is decreased by the REMPC strategy.With the devised dispatching scheme,the ability of the IES to handle the dispatching risk caused by prediction errors is enhanced.Improved dispatching robustness and operational economy are also achieved.
基金supported by The National Key R&D Program of China(2020YFB0905900):Research on artificial intelligence application of power internet of things.
文摘The coordinated optimization problem of the electricity-gas-heat integrated energy system(IES)has the characteristics of strong coupling,non-convexity,and nonlinearity.The centralized optimization method has a high cost of communication and complex modeling.Meanwhile,the traditional numerical iterative solution cannot deal with uncertainty and solution efficiency,which is difficult to apply online.For the coordinated optimization problem of the electricity-gas-heat IES in this study,we constructed a model for the distributed IES with a dynamic distribution factor and transformed the centralized optimization problem into a distributed optimization problem in the multi-agent reinforcement learning environment using multi-agent deep deterministic policy gradient.Introducing the dynamic distribution factor allows the system to consider the impact of changes in real-time supply and demand on system optimization,dynamically coordinating different energy sources for complementary utilization and effectively improving the system economy.Compared with centralized optimization,the distributed model with multiple decision centers can achieve similar results while easing the pressure on system communication.The proposed method considers the dual uncertainty of renewable energy and load in the training.Compared with the traditional iterative solution method,it can better cope with uncertainty and realize real-time decision making of the system,which is conducive to the online application.Finally,we verify the effectiveness of the proposed method using an example of an IES coupled with three energy hub agents.
基金supported in part by the MOST Major Research and Development Project(Grant No.2021YFB2900204)the National Natural Science Foundation of China(NSFC)(Grant No.62201123,No.62132004,No.61971102)+3 种基金China Postdoctoral Science Foundation(Grant No.2022TQ0056)in part by the financial support of the Sichuan Science and Technology Program(Grant No.2022YFH0022)Sichuan Major R&D Project(Grant No.22QYCX0168)the Municipal Government of Quzhou(Grant No.2022D031)。
文摘Integrated data and energy transfer(IDET)enables the electromagnetic waves to transmit wireless energy at the same time of data delivery for lowpower devices.In this paper,an energy harvesting modulation(EHM)assisted multi-user IDET system is studied,where all the received signals at the users are exploited for energy harvesting without the degradation of wireless data transfer(WDT)performance.The joint IDET performance is then analysed theoretically by conceiving a practical time-dependent wireless channel.With the aid of the AO based algorithm,the average effective data rate among users are maximized by ensuring the BER and the wireless energy transfer(WET)performance.Simulation results validate and evaluate the IDET performance of the EHM assisted system,which also demonstrates that the optimal number of user clusters and IDET time slots should be allocated,in order to improve the WET and WDT performance.
基金supported by the Guangxi Science and Technology Major Special Project (Project Number GUIKEAA22067079-1).
文摘With the development of renewable energy technologies such as photovoltaics and wind power,it has become a research hotspot to improve the consumption rate of new energy and reduce energy costs through the deployment of energy storage.To solve the problem of the interests of different subjects in the operation of the energy storage power stations(ESS)and the integrated energy multi-microgrid alliance(IEMA),this paper proposes the optimization operation method of the energy storage power station and the IEMA based on the Stackelberg game.In the upper layer,ESS optimizes charging and discharging decisions through a dynamic pricing mechanism.In the lower layer,IEMA optimizes the output of various energy conversion coupled devices within the IEMA,as well as energy interaction and demand response(DR),based on the energy interaction prices provided by ESS.The results demonstrate that the optimization strategy proposed in this paper not only effectively balances the benefits of the IEMA and ESS but also enhances energy consumption rates and reduces IEMA energy costs.
基金supported by the National Natural Science Foundation of China(Grant No.62063016)。
文摘With increasing reforms related to integrated energy systems(IESs),each energy subsystem,as a participant based on bounded rationality,significantly influences the optimal scheduling of the entire IES through mutual learning and imitation.A reasonable multiagent joint operation strategy can help this system meet its low-carbon objectives.This paper proposes a bilayer low-carbon optimal operational strategy for an IES based on the Stackelberg master-slave game and multiagent joint operation.The studied IES includes cogeneration,power-to-gas,and carbon capture systems.Based on the Stackelberg master-slave game theory,sellers are used as leaders in the upper layer to set the prices of electricity and heat,while energy producers,energy storage providers,and load aggregators are used as followers in the lower layer to adjust the operational strategy of the system.An IES bilayer optimization model based on the Stackelberg master-slave game was developed.Finally,the Karush-Kuhn-Tucker(KKT)condition and linear relaxation technology are used to convert the bilayer game model to a single layer.CPLEX,which is a mathematical program solver,is used to solve the equilibrium problem and the carbon emission trading cost of the system when the benefits of each subject reach maximum and to analyze the impact of different carbon emission trading prices and growth rates on the operational strategy of the system.As an experimental demonstration,we simulated an IES coupled with an IEEE 39-node electrical grid system,a six-node heat network system,and a six-node gas network system.The simulation results confirm the effectiveness and feasibility of the proposed model.
基金Supported by National Natural Science Foundation of China(No.51777193).
文摘The integrated energy systems,usually including electric energy,natural gas and thermal energy,play a pivotal role in the energy Internet project,which could improve the accommodation of renewable energy through multienergy complementary ways.Focusing on the regional integrated energy system composed of electrical microgrid and natural gas network,a fault risk warning method based on the improved RelieF-softmax method is proposed in this paper.The raw data-set was first clustered by the K-maxmin method to improve the preference of the random sampling process in the RelieF algorithm,and thereby achieved a hierarchical and non-repeated sampling.Then,the improved RelieF algorithm is used to identify the feature vectors,calculate the feature weights,and select the preferred feature subset according to the initially set threshold.In addition,a correlation coefficient method is applied to reduce the feature subset,and further eliminate the redundant feature vectors to obtain the optimal feature subset.Finally,the softmax classifier is used to obtain the early warnings of the integrated energy system.Case studies are conducted on an integrated energy system in the south of China to demonstrate the accuracy of fault risk warning method proposed in this paper.
文摘The combination of structural health monitoring and vibration control is of great importance to provide components of smart structures.While synthetic algorithms have been proposed,adaptive control that is compatible with changing conditions still needs to be used,and time-varying systems are required to be simultaneously estimated with the application of adaptive control.In this research,the identification of structural time-varying dynamic characteristics and optimized simple adaptive control are integrated.First,reduced variations of physical parameters are estimated online using the multiple forgetting factor recursive least squares(MFRLS)method.Then,the energy from the structural vibration is simultaneously specified to optimize the control force with the identified parameters to be operational.Optimization is also performed based on the probability density function of the energy under the seismic excitation at any time.Finally,the optimal control force is obtained by the simple adaptive control(SAC)algorithm and energy coefficient.A numerical example and benchmark structure are employed to investigate the efficiency of the proposed approach.The simulation results revealed the effectiveness of the integrated online identification and optimal adaptive control in systems.