Here we propose that the rejuvenation of leukocytes with iPSC technology in vitro and transfusion of cancer cellresistant white blood cells back to human body provide a prospective therapy for cancer patients.
Stem cell therapies show great potential for use in regenerative medicine, though advancements in safe stem cell technology need to be realized. Human induced pluripotent stem cells (hiPSCs) hold an advantage over oth...Stem cell therapies show great potential for use in regenerative medicine, though advancements in safe stem cell technology need to be realized. Human induced pluripotent stem cells (hiPSCs) hold an advantage over other stem cell types for use in cell-based therapies due to their potential as an unlimited source of rejuvenated and immunocompatible SCs which do not elicit the ethical and moral debates associated with the destruction of human embryos. Towards realization of this potential this review focuses on the recent progress in DNA-and xeno-free reprogramming methods, particularly small molecule methods, as well as addresses some of the latest insights on donor cell gene expression, telomere dynamics, and epigenetic aberrations that are a potential barrier to successful widespread clinical applications.展开更多
Objective Charcot-Marie-Tooth disease(CMT)severely affects patient activity,and may cause disability.However,no clinical treatment is available to reverse the disease course.The combination of CRISPR/Cas9 and iPSCs ma...Objective Charcot-Marie-Tooth disease(CMT)severely affects patient activity,and may cause disability.However,no clinical treatment is available to reverse the disease course.The combination of CRISPR/Cas9 and iPSCs may have therapeutic potential against nervous diseases,such as CMT.Methods In the present study,the skin fibroblasts of CMT type 2D(CMT2D)patients with the c.880G>A heterozygous nucleotide mutation in the GARS gene were reprogrammed into iPSCs using three plasmids(pCXLE-hSK,pCXLE-hUL and pCXLE-hOCT3/4-shp5-F).Then,CRISPR/Cas9 technology was used to repair the mutated gene sites at the iPSC level.Results An iPSC line derived from the GARS(G294R)family with fibular atrophy was successfully induced,and the mutated gene loci were repaired at the iPSC level using CRISPR/Cas9 technology.These findings lay the foundation for future research on drug screening and cell therapy.Conclusion iPSCs can differentiate into different cell types,and originate from autologous cells.Therefore,they are promising for the development of autologous cell therapies for degenerative diseases.The combination of CRISPR/Cas9 and iPSCs may open a new avenue for the treatment of nervous diseases,such as CMT.展开更多
Chimeric antigen receptor-natural killer(CAR-NK) cells have emerged as another prominent player in the realm of tumor immunotherapy following CAR-T cells. The unique features of CAR-NK cells make it possible to compen...Chimeric antigen receptor-natural killer(CAR-NK) cells have emerged as another prominent player in the realm of tumor immunotherapy following CAR-T cells. The unique features of CAR-NK cells make it possible to compensate for deficiencies in CAR-T therapy, such as the complexity of the manufacturing process, clinical adverse events, and solid tumor challenges. To date, CAR-NK products from different allogeneic sources have exhibited remarkable anti-tumor effects on preclinical studies and have gradually been applied in clinical practice.However, each source has advantages and disadvantages. Selecting a suitable source may help maximize CAR-NK cell efficacy and increase the feasibility of clinical transformation. Therefore, this review discusses the development and challenges of CAR-NK cells from different sources to provide a reference for future exploration.展开更多
文摘Here we propose that the rejuvenation of leukocytes with iPSC technology in vitro and transfusion of cancer cellresistant white blood cells back to human body provide a prospective therapy for cancer patients.
文摘Stem cell therapies show great potential for use in regenerative medicine, though advancements in safe stem cell technology need to be realized. Human induced pluripotent stem cells (hiPSCs) hold an advantage over other stem cell types for use in cell-based therapies due to their potential as an unlimited source of rejuvenated and immunocompatible SCs which do not elicit the ethical and moral debates associated with the destruction of human embryos. Towards realization of this potential this review focuses on the recent progress in DNA-and xeno-free reprogramming methods, particularly small molecule methods, as well as addresses some of the latest insights on donor cell gene expression, telomere dynamics, and epigenetic aberrations that are a potential barrier to successful widespread clinical applications.
基金supported by grants from the National Major Scientific and Technological Special Project for“Significant New Drugs Development”(No.2019ZX09301159)the“Thousand Talent Program”for Science and Technology Innovation Leader in Henan(No.194200510002)+1 种基金the Bingtuan Science and Technology Project(No.2019AB034)the Natural Science Foundation of Henan Province of China(No.202300410381).
文摘Objective Charcot-Marie-Tooth disease(CMT)severely affects patient activity,and may cause disability.However,no clinical treatment is available to reverse the disease course.The combination of CRISPR/Cas9 and iPSCs may have therapeutic potential against nervous diseases,such as CMT.Methods In the present study,the skin fibroblasts of CMT type 2D(CMT2D)patients with the c.880G>A heterozygous nucleotide mutation in the GARS gene were reprogrammed into iPSCs using three plasmids(pCXLE-hSK,pCXLE-hUL and pCXLE-hOCT3/4-shp5-F).Then,CRISPR/Cas9 technology was used to repair the mutated gene sites at the iPSC level.Results An iPSC line derived from the GARS(G294R)family with fibular atrophy was successfully induced,and the mutated gene loci were repaired at the iPSC level using CRISPR/Cas9 technology.These findings lay the foundation for future research on drug screening and cell therapy.Conclusion iPSCs can differentiate into different cell types,and originate from autologous cells.Therefore,they are promising for the development of autologous cell therapies for degenerative diseases.The combination of CRISPR/Cas9 and iPSCs may open a new avenue for the treatment of nervous diseases,such as CMT.
文摘Chimeric antigen receptor-natural killer(CAR-NK) cells have emerged as another prominent player in the realm of tumor immunotherapy following CAR-T cells. The unique features of CAR-NK cells make it possible to compensate for deficiencies in CAR-T therapy, such as the complexity of the manufacturing process, clinical adverse events, and solid tumor challenges. To date, CAR-NK products from different allogeneic sources have exhibited remarkable anti-tumor effects on preclinical studies and have gradually been applied in clinical practice.However, each source has advantages and disadvantages. Selecting a suitable source may help maximize CAR-NK cell efficacy and increase the feasibility of clinical transformation. Therefore, this review discusses the development and challenges of CAR-NK cells from different sources to provide a reference for future exploration.