期刊文献+
共找到18,197篇文章
< 1 2 250 >
每页显示 20 50 100
An Extended Numerical Method by Stancu Polynomials for Solution of Integro-Differential Equations Arising in Oscillating Magnetic Fields
1
作者 Neşe İşler Acar 《Advances in Pure Mathematics》 2024年第10期785-796,共12页
In this study, the Bernstein collocation method has been expanded to Stancu collocation method for numerical solution of the charged particle motion for certain configurations of oscillating magnetic fields modelled b... In this study, the Bernstein collocation method has been expanded to Stancu collocation method for numerical solution of the charged particle motion for certain configurations of oscillating magnetic fields modelled by a class of linear integro-differential equations. As the method has been improved, the Stancu polynomials that are generalization of the Bernstein polynomials have been used. The method has been tested on a physical problem how the method can be applied. Moreover, numerical results of the method have been compared with the numerical results of the other methods to indicate the efficiency of the method. 展开更多
关键词 Stancu Polynomials Collocation Method integro-differential equations Linear equation Systems Matrix equations
下载PDF
THE EXACT MEROMORPHIC SOLUTIONS OF SOME NONLINEAR DIFFERENTIAL EQUATIONS
2
作者 刘慧芳 毛志强 《Acta Mathematica Scientia》 SCIE CSCD 2024年第1期103-114,共12页
We find the exact forms of meromorphic solutions of the nonlinear differential equations■,n≥3,k≥1,where q,Q are nonzero polynomials,Q■Const.,and p_(1),p_(2),α_(1),α_(2)are nonzero constants withα_(1)≠α_(2).Co... We find the exact forms of meromorphic solutions of the nonlinear differential equations■,n≥3,k≥1,where q,Q are nonzero polynomials,Q■Const.,and p_(1),p_(2),α_(1),α_(2)are nonzero constants withα_(1)≠α_(2).Compared with previous results on the equation p(z)f^(3)+q(z)f"=-sinα(z)with polynomial coefficients,our results show that the coefficient of the term f^((k))perturbed by multiplying an exponential function will affect the structure of its solutions. 展开更多
关键词 Nevanlinna theory nonlinear differential equations meromorphic functions entire functions
下载PDF
Continuous-Time Channel Prediction Based on Tensor Neural Ordinary Differential Equation
3
作者 Mingyao Cui Hao Jiang +2 位作者 Yuhao Chen Yang Du Linglong Dai 《China Communications》 SCIE CSCD 2024年第1期163-174,共12页
Channel prediction is critical to address the channel aging issue in mobile scenarios.Existing channel prediction techniques are mainly designed for discrete channel prediction,which can only predict the future channe... Channel prediction is critical to address the channel aging issue in mobile scenarios.Existing channel prediction techniques are mainly designed for discrete channel prediction,which can only predict the future channel in a fixed time slot per frame,while the other intra-frame channels are usually recovered by interpolation.However,these approaches suffer from a serious interpolation loss,especially for mobile millimeter-wave communications.To solve this challenging problem,we propose a tensor neural ordinary differential equation(TN-ODE)based continuous-time channel prediction scheme to realize the direct prediction of intra-frame channels.Specifically,inspired by the recently developed continuous mapping model named neural ODE in the field of machine learning,we first utilize the neural ODE model to predict future continuous-time channels.To improve the channel prediction accuracy and reduce computational complexity,we then propose the TN-ODE scheme to learn the structural characteristics of the high-dimensional channel by low-dimensional learnable transform.Simulation results show that the proposed scheme is able to achieve higher intra-frame channel prediction accuracy than existing schemes. 展开更多
关键词 channel prediction massive multipleinput-multiple-output millimeter-wave communications ordinary differential equation
下载PDF
A Collocation Technique via Pell-Lucas Polynomials to Solve Fractional Differential EquationModel for HIV/AIDS with Treatment Compartment
4
作者 Gamze Yıldırım Suayip Yüzbası 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期281-310,共30页
In this study,a numerical method based on the Pell-Lucas polynomials(PLPs)is developed to solve the fractional order HIV/AIDS epidemic model with a treatment compartment.The HIV/AIDS mathematical model with a treatmen... In this study,a numerical method based on the Pell-Lucas polynomials(PLPs)is developed to solve the fractional order HIV/AIDS epidemic model with a treatment compartment.The HIV/AIDS mathematical model with a treatment compartment is divided into five classes,namely,susceptible patients(S),HIV-positive individuals(I),individuals with full-blown AIDS but not receiving ARV treatment(A),individuals being treated(T),and individuals who have changed their sexual habits sufficiently(R).According to the method,by utilizing the PLPs and the collocation points,we convert the fractional order HIV/AIDS epidemic model with a treatment compartment into a nonlinear system of the algebraic equations.Also,the error analysis is presented for the Pell-Lucas approximation method.The aim of this study is to observe the behavior of five populations after 200 days when drug treatment is applied to HIV-infectious and full-blown AIDS people.To demonstrate the usefulness of this method,the applications are made on the numerical example with the help of MATLAB.In addition,four cases of the fractional order derivative(p=1,p=0.95,p=0.9,p=0.85)are examined in the range[0,200].Owing to applications,we figured out that the outcomes have quite decent errors.Also,we understand that the errors decrease when the value of N increases.The figures in this study are created in MATLAB.The outcomes indicate that the presented method is reasonably sufficient and correct. 展开更多
关键词 Collocation method fractional differential equations HIV/AIDS epidemic model Pell-Lucas polynomials
下载PDF
Results Involving Partial Differential Equations and Their Solution by Certain Integral Transform
5
作者 Rania Saadah Mohammed Amleh +2 位作者 Ahmad Qazza Shrideh Al-Omari Ahmet Ocak Akdemir 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1593-1616,共24页
In this study,we aimto investigate certain triple integral transformand its application to a class of partial differentialequations.We discuss various properties of the new transformincluding inversion, linearity, exi... In this study,we aimto investigate certain triple integral transformand its application to a class of partial differentialequations.We discuss various properties of the new transformincluding inversion, linearity, existence, scaling andshifting, etc. Then,we derive several results enfolding partial derivatives and establish amulti-convolution theorem.Further, we apply the aforementioned transform to some classical functions and many types of partial differentialequations involving heat equations,wave equations, Laplace equations, and Poisson equations aswell.Moreover,wedraw some figures to illustrate 3-D contour plots for exact solutions of some selected examples involving differentvalues in their variables. 展开更多
关键词 ARA transform double ARA transform triple ARA transform partial differential equations integral transform
下载PDF
Euler’s First-Order Explicit Method–Peridynamic Differential Operator for Solving Population Balance Equations of the Crystallization Process
6
作者 Chunlei Ruan Cengceng Dong +2 位作者 Kunfeng Liang Zhijun Liu Xinru Bao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期3033-3049,共17页
Using Euler’s first-order explicit(EE)method and the peridynamic differential operator(PDDO)to discretize the time and internal crystal-size derivatives,respectively,the Euler’s first-order explicit method–peridyna... Using Euler’s first-order explicit(EE)method and the peridynamic differential operator(PDDO)to discretize the time and internal crystal-size derivatives,respectively,the Euler’s first-order explicit method–peridynamic differential operator(EE–PDDO)was obtained for solving the one-dimensional population balance equation in crystallization.Four different conditions during crystallization were studied:size-independent growth,sizedependent growth in a batch process,nucleation and size-independent growth,and nucleation and size-dependent growth in a continuous process.The high accuracy of the EE–PDDO method was confirmed by comparing it with the numerical results obtained using the second-order upwind and HR-van methods.The method is characterized by non-oscillation and high accuracy,especially in the discontinuous and sharp crystal size distribution.The stability of the EE–PDDO method,choice of weight function in the PDDO method,and optimal time step are also discussed. 展开更多
关键词 Population balance equation CRYSTALLIZATION peridynamic differential operator Euler’s first-order explicit method
下载PDF
Meta-Auto-Decoder:a Meta-Learning-Based Reduced Order Model for Solving Parametric Partial Differential Equations
7
作者 Zhanhong Ye Xiang Huang +1 位作者 Hongsheng Liu Bin Dong 《Communications on Applied Mathematics and Computation》 EI 2024年第2期1096-1130,共35页
Many important problems in science and engineering require solving the so-called parametric partial differential equations(PDEs),i.e.,PDEs with different physical parameters,boundary conditions,shapes of computational... Many important problems in science and engineering require solving the so-called parametric partial differential equations(PDEs),i.e.,PDEs with different physical parameters,boundary conditions,shapes of computational domains,etc.Typical reduced order modeling techniques accelerate the solution of the parametric PDEs by projecting them onto a linear trial manifold constructed in the ofline stage.These methods often need a predefined mesh as well as a series of precomputed solution snapshots,and may struggle to balance between the efficiency and accuracy due to the limitation of the linear ansatz.Utilizing the nonlinear representation of neural networks(NNs),we propose the Meta-Auto-Decoder(MAD)to construct a nonlinear trial manifold,whose best possible performance is measured theoretically by the decoder width.Based on the meta-learning concept,the trial manifold can be learned in a mesh-free and unsupervised way during the pre-training stage.Fast adaptation to new(possibly heterogeneous)PDE parameters is enabled by searching on this trial manifold,and optionally fine-tuning the trial manifold at the same time.Extensive numerical experiments show that the MAD method exhibits a faster convergence speed without losing the accuracy than other deep learning-based methods. 展开更多
关键词 Parametric partial differential equations(PDEs) META-LEARNING Reduced order modeling Neural networks(NNs) Auto-decoder
下载PDF
Pseudo S-Asymptotically(ω,c)-Periodic Solutions to Fractional Differential Equations of Sobolev Type
8
作者 MAO Hang-ning CHANG Yong-kui 《Chinese Quarterly Journal of Mathematics》 2024年第3期295-306,共12页
In this paper,we firstly recall some basic results on pseudo S-asymptotically(ω,c)-periodic functions and Sobolev type fractional differential equation.We secondly investigate some existence of pseudo S-asymptotical... In this paper,we firstly recall some basic results on pseudo S-asymptotically(ω,c)-periodic functions and Sobolev type fractional differential equation.We secondly investigate some existence of pseudo S-asymptotically(ω,c)-periodic solutions for a semilinear fractional differential equations of Sobolev type.We finally present a simple example. 展开更多
关键词 Pseudo S-asymptotically(ω c)-periodic functions Evolution equations Sobolev type Fractional differential equations Existence and uniqueness
下载PDF
Research on Carbon Emission for Preventive Maintenance of Wind Turbine Gearbox Based on Stochastic Differential Equation
9
作者 Hongsheng Su Lixia Dong +1 位作者 Xiaoying Yu Kai Liu 《Energy Engineering》 EI 2024年第4期973-986,共14页
Time based maintenance(TBM)and condition based maintenance(CBM)are widely applied in many large wind farms to optimize the maintenance issues of wind turbine gearboxes,however,these maintenance strategies do not take ... Time based maintenance(TBM)and condition based maintenance(CBM)are widely applied in many large wind farms to optimize the maintenance issues of wind turbine gearboxes,however,these maintenance strategies do not take into account environmental benefits during full life cycle such as carbon emissions issues.Hence,this article proposes a carbon emissions computing model for preventive maintenance activities of wind turbine gearboxes to solve the issue.Based on the change of the gearbox state during operation and the influence of external random factors on the gearbox state,a stochastic differential equation model(SDE)and corresponding carbon emission model are established,wherein SDE is applied to model the evolution of the device state,whereas carbon emission is used to implement carbon emissions computing.The simulation results indicate that the proposed preventive maintenance cannot ensure reliable operation of wind turbine gearboxes but reduce carbon emissions during their lifespan.Compared with TBM,CBM minimizes unit carbon emissions without influencing reliable operation,making it an effective maintenance method. 展开更多
关键词 Stochastic differential equation(SDE) condition-based maintenance(CBM) carbon emissions
下载PDF
New Numerical Integration Formulations for Ordinary Differential Equations
10
作者 Serdar Beji 《Advances in Pure Mathematics》 2024年第8期650-666,共17页
An entirely new framework is established for developing various single- and multi-step formulations for the numerical integration of ordinary differential equations. Besides polynomials, unconventional base-functions ... An entirely new framework is established for developing various single- and multi-step formulations for the numerical integration of ordinary differential equations. Besides polynomials, unconventional base-functions with trigonometric and exponential terms satisfying different conditions are employed to generate a number of formulations. Performances of the new schemes are tested against well-known numerical integrators for selected test cases with quite satisfactory results. Convergence and stability issues of the new formulations are not addressed as the treatment of these aspects requires a separate work. The general approach introduced herein opens a wide vista for producing virtually unlimited number of formulations. 展开更多
关键词 Single- and Multi-Step Numerical Integration Unconventional Base-Functions Ordinary differential equations
下载PDF
A Comparative Study of Adomian Decomposition Method with Variational Iteration Method for Solving Linear and Nonlinear Differential Equations
11
作者 Sarah Khaled Al Baghdadi N. Ameer Ahammad 《Journal of Applied Mathematics and Physics》 2024年第8期2789-2819,共31页
This study compares the Adomian Decomposition Method (ADM) and the Variational Iteration Method (VIM) for solving nonlinear differential equations in engineering. Differential equations are essential for modeling dyna... This study compares the Adomian Decomposition Method (ADM) and the Variational Iteration Method (VIM) for solving nonlinear differential equations in engineering. Differential equations are essential for modeling dynamic systems in various disciplines, including biological processes, heat transfer, and control systems. This study addresses first, second, and third-order nonlinear differential equations using Mathematica for data generation and graphing. The ADM, developed by George Adomian, uses Adomian polynomials to handle nonlinear terms, which can be computationally intensive. In contrast, VIM, developed by He, directly iterates the correction functional, providing a more straightforward and efficient approach. This study highlights VIM’s rapid convergence and effectiveness of VIM, particularly for nonlinear problems, where it simplifies calculations and offers direct solutions without polynomial derivation. The results demonstrate VIM’s superior efficiency and rapid convergence of VIM compared with ADM. The VIM’s minimal computational requirements make it practical for real-time applications and complex system modeling. Our findings align with those of previous research, confirming VIM’s efficiency of VIM in various engineering applications. This study emphasizes the importance of selecting appropriate methods based on specific problem requirements. While ADM is valuable for certain nonlinearities, VIM’s approach is ideal for many engineering scenarios. Future research should explore broader applications and hybrid methods to enhance the solution’s accuracy and efficiency. This comprehensive comparison provides valuable guidance for selecting effective numerical methods for differential equations in engineering. 展开更多
关键词 differential equations Numerical Analysis Mathematical Computing Engineering Models Nonlinear Dynamics
下载PDF
Comparative Studies between Picard’s and Taylor’s Methods of Numerical Solutions of First Ordinary Order Differential Equations Arising from Real-Life Problems
12
作者 Khalid Abd Elrazig Awad Alla Elnour 《Journal of Applied Mathematics and Physics》 2024年第3期877-896,共20页
To solve the first-order differential equation derived from the problem of a free-falling object and the problem arising from Newton’s law of cooling, the study compares the numerical solutions obtained from Picard’... To solve the first-order differential equation derived from the problem of a free-falling object and the problem arising from Newton’s law of cooling, the study compares the numerical solutions obtained from Picard’s and Taylor’s series methods. We have carried out a descriptive analysis using the MATLAB software. Picard’s and Taylor’s techniques for deriving numerical solutions are both strong mathematical instruments that behave similarly. All first-order differential equations in standard form that have a constant function on the right-hand side share this similarity. As a result, we can conclude that Taylor’s approach is simpler to use, more effective, and more accurate. We will contrast Rung Kutta and Taylor’s methods in more detail in the following section. 展开更多
关键词 First-Order differential equations Picard Method Taylor Series Method Numerical Solutions Numerical Examples MATLAB Software
下载PDF
Legendre-Weighted Residual Methods for System of Fractional Order Differential Equations
13
作者 Umme Ruman Md. Shafiqul Islam 《Journal of Applied Mathematics and Physics》 2024年第9期3163-3184,共22页
The numerical approach for finding the solution of fractional order systems of boundary value problems (BPVs) is derived in this paper. The implementation of the weighted residuals such as Galerkin, Least Square, and ... The numerical approach for finding the solution of fractional order systems of boundary value problems (BPVs) is derived in this paper. The implementation of the weighted residuals such as Galerkin, Least Square, and Collocation methods are included for solving fractional order differential equations, which is broadened to acquire the approximate solutions of fractional order systems with differentiable polynomials, namely Legendre polynomials, as basis functions. The algorithm of the residual formulations of matrix form can be coded efficiently. The interpretation of Caputo fractional derivatives is employed here. We have demonstrated these methods numerically through a few examples of linear and nonlinear BVPs. The results in absolute errors show that the present method efficiently finds the numerical solutions of fractional order systems of differential equations. 展开更多
关键词 Fractional differential equations System of Fractional Order BVPs Weighted Residual Methods Modified Legendre Polynomials
下载PDF
Thermomechanical Dynamics (TMD) and Bifurcation-Integration Solutions in Nonlinear Differential Equations with Time-Dependent Coefficients
14
作者 Hiroshi Uechi Lisa Uechi Schun T. Uechi 《Journal of Applied Mathematics and Physics》 2024年第5期1733-1743,共11页
The new independent solutions of the nonlinear differential equation with time-dependent coefficients (NDE-TC) are discussed, for the first time, by employing experimental device called a drinking bird whose simple ba... The new independent solutions of the nonlinear differential equation with time-dependent coefficients (NDE-TC) are discussed, for the first time, by employing experimental device called a drinking bird whose simple back-and-forth motion develops into water drinking motion. The solution to a drinking bird equation of motion manifests itself the transition from thermodynamic equilibrium to nonequilibrium irreversible states. The independent solution signifying a nonequilibrium thermal state seems to be constructed as if two independent bifurcation solutions are synthesized, and so, the solution is tentatively termed as the bifurcation-integration solution. The bifurcation-integration solution expresses the transition from mechanical and thermodynamic equilibrium to a nonequilibrium irreversible state, which is explicitly shown by the nonlinear differential equation with time-dependent coefficients (NDE-TC). The analysis established a new theoretical approach to nonequilibrium irreversible states, thermomechanical dynamics (TMD). The TMD method enables one to obtain thermodynamically consistent and time-dependent progresses of thermodynamic quantities, by employing the bifurcation-integration solutions of NDE-TC. We hope that the basic properties of bifurcation-integration solutions will be studied and investigated further in mathematics, physics, chemistry and nonlinear sciences in general. 展开更多
关键词 The Nonlinear differential equation with Time-Dependent Coefficients The Bifurcation-Integration Solution Nonequilibrium Irreversible States Thermomechanical Dynamics (TMD)
下载PDF
Galerkin Method for Numerical Solution of Volterra Integro-Differential Equations with Certain Orthogonal Basis Function
15
作者 Omotayo Adebayo Taiwo Liman Kibokun Alhassan +1 位作者 Olutunde Samuel Odetunde Olatayo Olusegun Alabi 《International Journal of Modern Nonlinear Theory and Application》 2023年第2期68-80,共13页
This paper concerns the implementation of the orthogonal polynomials using the Galerkin method for solving Volterra integro-differential and Fredholm integro-differential equations. The constructed orthogonal polynomi... This paper concerns the implementation of the orthogonal polynomials using the Galerkin method for solving Volterra integro-differential and Fredholm integro-differential equations. The constructed orthogonal polynomials are used as basis functions in the assumed solution employed. Numerical examples for some selected problems are provided and the results obtained show that the Galerkin method with orthogonal polynomials as basis functions performed creditably well in terms of absolute errors obtained. 展开更多
关键词 Galerkin Method integro-differential equation Orthogonal Polynomials Basis Function Approximate Solution
下载PDF
Application of HAM for Nonlinear Integro-Differential Equations of Order Two
16
作者 Zainidin Eshkuvatov Davron Khayrullaev +2 位作者 Muzaffar Nurillaev Shalela Mohd Mahali Anvar Narzullaev 《Journal of Applied Mathematics and Physics》 2023年第1期55-68,共14页
In this work, we consider the second order nonlinear integro-differential Equation (IDEs) of the Volterra-Fredholm type. One of the popular methods for solving Volterra or Fredholm type IDEs is the method of quadratur... In this work, we consider the second order nonlinear integro-differential Equation (IDEs) of the Volterra-Fredholm type. One of the popular methods for solving Volterra or Fredholm type IDEs is the method of quadrature while the problem of consideration is a linear problem. If IDEs are nonlinear or integral kernel is complicated, then quadrature rule is not most suitable;therefore, other types of methods are needed to develop. One of the suitable and effective method is homotopy analysis method (HAM) developed by Liao in 1992. To apply HAM, we firstly reduced the IDEs into nonlinear integral Equation (IEs) of Volterra-Fredholm type;then the standard HAM was applied. Gauss-Legendre quadrature formula was used for kernel integrations. Obtained system of algebraic equations was solved numerically. Moreover, numerical examples demonstrate the high accuracy of the proposed method. Comparisons with other methods are also provided. The results show that the proposed method is simple, effective and dominated other methods. 展开更多
关键词 Integral-differential equations Homotopy Analyses Method Iterative System Algebraic equations Gauss-Legendre Quadrature Formula
下载PDF
A NOTE ON THE JULIA SETS OF ENTIRE SOLUTIONS TO DELAY DIFFERENTIAL EQUATIONS 被引量:2
17
作者 李叶舟 孙合庆 《Acta Mathematica Scientia》 SCIE CSCD 2023年第1期143-155,共13页
Let f be an entire solution of the Tumura-Clunie type non-linear delay differential equation.We mainly investigate the dynamical properties of Julia sets of f,and the lower bound estimates of the measure of related li... Let f be an entire solution of the Tumura-Clunie type non-linear delay differential equation.We mainly investigate the dynamical properties of Julia sets of f,and the lower bound estimates of the measure of related limiting directions is verified. 展开更多
关键词 delay differential equation dynamical properties Julia sets limiting directions
下载PDF
THE GROWTH OF SOLUTIONS TO HIGHER ORDER DIFFERENTIAL EQUATIONS WITH EXPONENTIAL POLYNOMIALS AS ITS COEFFICIENTS 被引量:1
18
作者 黄志波 罗敏伟 陈宗煊 《Acta Mathematica Scientia》 SCIE CSCD 2023年第1期439-449,共11页
By looking at the situation when the coefficients Pj(z)(j=1,2,…,n-1)(or most of them) are exponential polynomials,we investigate the fact that all nontrivial solutions to higher order differential equations f((n))+Pn... By looking at the situation when the coefficients Pj(z)(j=1,2,…,n-1)(or most of them) are exponential polynomials,we investigate the fact that all nontrivial solutions to higher order differential equations f((n))+Pn-1(z)f((n-1))+…+P0(z)f=0 are of infinite order.An exponential polynomial coefficient plays a key role in these results. 展开更多
关键词 differential equations entire solution exponential polynomial GROWTH
下载PDF
Adaptive multi-step piecewise interpolation reproducing kernel method for solving the nonlinear time-fractional partial differential equation arising from financial economics 被引量:1
19
作者 杜明婧 孙宝军 凯歌 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第3期53-57,共5页
This paper is aimed at solving the nonlinear time-fractional partial differential equation with two small parameters arising from option pricing model in financial economics.The traditional reproducing kernel(RK)metho... This paper is aimed at solving the nonlinear time-fractional partial differential equation with two small parameters arising from option pricing model in financial economics.The traditional reproducing kernel(RK)method which deals with this problem is very troublesome.This paper proposes a new method by adaptive multi-step piecewise interpolation reproducing kernel(AMPIRK)method for the first time.This method has three obvious advantages which are as follows.Firstly,the piecewise number is reduced.Secondly,the calculation accuracy is improved.Finally,the waste time caused by too many fragments is avoided.Then four numerical examples show that this new method has a higher precision and it is a more timesaving numerical method than the others.The research in this paper provides a powerful mathematical tool for solving time-fractional option pricing model which will play an important role in financial economics. 展开更多
关键词 time-fractional partial differential equation adaptive multi-step reproducing kernel method method numerical solution
下载PDF
A Comparative Survey of an Approximate Solution Method for Stochastic Delay Differential Equations
20
作者 Emenonye Christian Emenonye Donatus Anonwa 《Applied Mathematics》 2023年第3期196-207,共12页
This study is focused on the approximate solution for the class of stochastic delay differential equations. The techniques applied involve the use of Caratheodory and Euler Maruyama procedures which approximated to st... This study is focused on the approximate solution for the class of stochastic delay differential equations. The techniques applied involve the use of Caratheodory and Euler Maruyama procedures which approximated to stochastic delay differential equations. Based on the Caratheodory approximate procedure, it was proved that stochastic delay differential equations have unique solution and established that the Caratheodory approximate solution converges to the unique solution of stochastic delay differential equations under the Cauchy sequence and initial condition. This Caratheodory approximate procedure and Euler method both converge at the same rate. This is achieved by replacing the present state with past state. The existence and uniqueness of an approximate solution of the stochastic delay differential equation were shown and the approximate solution to the unique solution was also shown. . 展开更多
关键词 Approximate Solution differential equations Techniques Stochastic differential equation EXISTENCE UNIQUENESS Approximate Procedure
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部