Environment perception is one of the most critical technology of intelligent transportation systems(ITS).Motion interaction between multiple vehicles in ITS makes it important to perform multi-object tracking(MOT).How...Environment perception is one of the most critical technology of intelligent transportation systems(ITS).Motion interaction between multiple vehicles in ITS makes it important to perform multi-object tracking(MOT).However,most existing MOT algorithms follow the tracking-by-detection framework,which separates detection and tracking into two independent segments and limit the global efciency.Recently,a few algorithms have combined feature extraction into one network;however,the tracking portion continues to rely on data association,and requires com‑plex post-processing for life cycle management.Those methods do not combine detection and tracking efciently.This paper presents a novel network to realize joint multi-object detection and tracking in an end-to-end manner for ITS,named as global correlation network(GCNet).Unlike most object detection methods,GCNet introduces a global correlation layer for regression of absolute size and coordinates of bounding boxes,instead of ofsetting predictions.The pipeline of detection and tracking in GCNet is conceptually simple,and does not require compli‑cated tracking strategies such as non-maximum suppression and data association.GCNet was evaluated on a multivehicle tracking dataset,UA-DETRAC,demonstrating promising performance compared to state-of-the-art detectors and trackers.展开更多
The exponential increase in IoT device usage has spawned numerous cyberspace innovations.IoT devices,sensors,and actuators bridge the gap between physical processes and the cyber network in a cyber-physical system(CPS...The exponential increase in IoT device usage has spawned numerous cyberspace innovations.IoT devices,sensors,and actuators bridge the gap between physical processes and the cyber network in a cyber-physical system(CPS).Cyber-physical system is a complex system from a security perspective due to the heterogeneous nature of its components and the fact that IoT devices can serve as an entry point for cyberattacks.Most adversaries design their attack strategies on systems to gain an advantage at a relatively lower cost,whereas abusive adversaries initiate an attack to inflict maximum damage without regard to cost or reward.In this paper,a sensor spoofing attack is modelled as a malicious adversary attempting to cause system failure by interfering with the feedback control mechanism.It is accomplished by feeding spoofed sensor values to the controller and issuing erroneous commands to the actuator.Experiments on a Simulink-simulated linear CPS support the proof of concept for the proposed abusive ideology,demonstrating three attack strategies.The impact of the evaluations stresses the importance of testing the CPS security against adversaries with abusive settings for preventing cyber-vandalism.Finally,the research concludes by highlighting the limitations of the proposed work,followed by recommendations for the future.展开更多
With the rise of the Internet of Vehicles(IoV)and the number of connected vehicles increasing on the roads,Cooperative Intelligent Transportation Systems(C-ITSs)have become an important area of research.As the number ...With the rise of the Internet of Vehicles(IoV)and the number of connected vehicles increasing on the roads,Cooperative Intelligent Transportation Systems(C-ITSs)have become an important area of research.As the number of Vehicle to Vehicle(V2V)and Vehicle to Interface(V2I)communication links increases,the amount of data received and processed in the network also increases.In addition,networking interfaces need to be made more secure for which existing cryptography-based security schemes may not be sufficient.Thus,there is a need to augment them with intelligent network intrusion detection techniques.Some machine learning-based intrusion detection and anomaly detection techniques for vehicular networks have been proposed in recent times.However,given the expected large network size,there is a necessity for extensive data processing for use in such anomaly detection methods.Deep learning solutions are lucrative options as they remove the necessity for feature selection.Therefore,with the amount of vehicular network traffic increasing at an unprecedented rate in the C-ITS scenario,the need for deep learning-based techniques is all the more heightened.This work presents three deep learning-based misbehavior classification schemes for intrusion detection in IoV networks using Long Short Term Memory(LSTM)and Convolutional Neural Networks(CNNs).The proposed Deep Learning Classification Engines(DCLE)comprise of single or multi-step classification done by deep learning models that are deployed on the vehicular edge servers.Vehicular data received by the Road Side Units(RSUs)is pre-processed and forwarded to the edge server for classifications following the three classification schemes proposed in this paper.The proposed classifiers identify 18 different vehicular behavior types,the F1-scores ranging from 95.58%to 96.75%,much higher than the existing works.By running the classifiers on testbeds emulating edge servers,the prediction performance and prediction time comparison of the proposed scheme is compared with those of the existing studies.展开更多
State departments of transportation’s (DOTs) decisions to invest resources to expand or implement intelligent transportation systems (ITS) programs or even retire existing infrastructure need to be based on performan...State departments of transportation’s (DOTs) decisions to invest resources to expand or implement intelligent transportation systems (ITS) programs or even retire existing infrastructure need to be based on performance evaluations. Nonetheless, an apparent gap exists between the need for ITS performance measurements and the actual implementation. The evidence available points to challenges in the ITS performance measurement processes. This paper evaluated the state of practice of performance measurement for ITS across the US and provided insights. A comprehensive literature review assessed the use of performance measures by DOTs for monitoring implemented ITS programs. Based on the gaps identified through the literature review, a nationwide qualitative survey was used to gather insights from key stakeholders on the subject matter and presented in this paper. From the data gathered, performance measurement of ITS is fairly integrated into ITS programs by DOTs, with most agencies considering the process beneficial. There, however, exist reasons that prevent agencies from measuring ITS performance to greater detail and quality. These include lack of data, fragmented or incomparable data formats, the complexity of the endeavor, lack of data scientists, and difficulty assigning responsibilities when inter-agency collaboration is required. Additionally, DOTs do not benchmark or compare their ITS performance with others for reasons that include lack of data, lack of guidance or best practices, and incomparable data formats. This paper is relevant as it provides insights expected to guide DOTs and other agencies in developing or reevaluating their ITS performance measurement processes.展开更多
The solving of dynamic matrix square root(DMSR)problems is frequently encountered in many scientific and engineering fields.Although the original zeroing neural network is powerful for solving the DMSR,it cannot vanis...The solving of dynamic matrix square root(DMSR)problems is frequently encountered in many scientific and engineering fields.Although the original zeroing neural network is powerful for solving the DMSR,it cannot vanish the influence of the noise perturbations,and its constant-coefficient design scheme cannot accelerate the convergence speed.Therefore,a noise-tolerate and adaptive coefficient zeroing neural network(NTACZNN)is raised to enhance the robust noise immunity performance and accelerate the conver-gence speed simultaneously.Then,the global convergence and robustness of the pro-posed NTACZNN are theoretically analysed under an ideal environment and noise-perturbed circumstances.Furthermore,some illustrative simulation examples are designed and performed in order to substantiate the efficacy and advantage of the NTACZNN for the DMSR problem solution.Compared with some existing ZNNs,the proposed NTACZNN possesses advanced performance in terms of noise tolerance,solution accuracy,and convergence rate.展开更多
Multi‐agent reinforcement learning relies on reward signals to guide the policy networks of individual agents.However,in high‐dimensional continuous spaces,the non‐stationary environment can provide outdated experi...Multi‐agent reinforcement learning relies on reward signals to guide the policy networks of individual agents.However,in high‐dimensional continuous spaces,the non‐stationary environment can provide outdated experiences that hinder convergence,resulting in ineffective training performance for multi‐agent systems.To tackle this issue,a novel reinforcement learning scheme,Mutual Information Oriented Deep Skill Chaining(MioDSC),is proposed that generates an optimised cooperative policy by incorporating intrinsic rewards based on mutual information to improve exploration efficiency.These rewards encourage agents to diversify their learning process by engaging in actions that increase the mutual information between their actions and the environment state.In addition,MioDSC can generate cooperative policies using the options framework,allowing agents to learn and reuse complex action sequences and accelerating the convergence speed of multi‐agent learning.MioDSC was evaluated in the multi‐agent particle environment and the StarCraft multi‐agent challenge at varying difficulty levels.The experimental results demonstrate that MioDSC outperforms state‐of‐the‐art methods and is robust across various multi‐agent system tasks with high stability.展开更多
With a population of 1.4 billion in China and a huge daily output of kitchen waste,intelligent treatment of kitchen waste is imperative.This article elaborates on the design and implementation of an intelligent monito...With a population of 1.4 billion in China and a huge daily output of kitchen waste,intelligent treatment of kitchen waste is imperative.This article elaborates on the design and implementation of an intelligent monitoring and early warning system from five aspects:system architecture design,hardware equipment selection and configuration,data collection and processing flow,early warning algorithm and model development,and system integration and testing verification.It also points out the advantages of the intelligent monitoring and early warning system in kitchen waste treatment.展开更多
Zimbabwe has witnessed the evolution of Information Communication Technology (ICT). The vehicle population soared to above 1.2 million hence rendering the Transport and Insurance domains complex. Therefore, there is a...Zimbabwe has witnessed the evolution of Information Communication Technology (ICT). The vehicle population soared to above 1.2 million hence rendering the Transport and Insurance domains complex. Therefore, there is a need to look at ways that can augment conventional Vehicular Management Information Systems (VMIS) in transforming business processes through Telematics. This paper aims to contextualise the role that telematics can play in transforming the Insurance Ecosystem in Zimbabwe. The main objective was to investigate the integration of Usage-Based Insurance (UBI) with vehicle tracking solutions provided by technology companies like Econet Wireless in Zimbabwe, aiming to align customer billing with individual risk profiles and enhance the synergy between technology and insurance service providers in the motor insurance ecosystem. A triangulation through structured interviews, questionnaires, and literature review, supported by Information Systems Analysis and Design techniques was conducted. The study adopted a case study approach, qualitatively analyzing the complexities of the Telematics insurance ecosystem in Zimbabwe, informed by the TOGAF framework. A case-study approach was applied to derive themes whilst applying within and cross-case analysis. Data was collected using questionnaires, and interviews. The findings of the research clearly show the importance of Telematics in modern-day insurance and the positive relationship between technology and insurance business performance. The study, therefore revealed how UBI can incentivize positive driver behavior, potentially reducing insurance premiums for safe drivers and lowering the incidence of claims against insurance companies. Future work can be done on studying the role of Telematics in combating highway crime and corruption.展开更多
The development of scientific inquiry and research has yielded numerous benefits in the realm of intelligent traffic control systems, particularly in the realm of automatic license plate recognition for vehicles. The ...The development of scientific inquiry and research has yielded numerous benefits in the realm of intelligent traffic control systems, particularly in the realm of automatic license plate recognition for vehicles. The design of license plate recognition algorithms has undergone digitalization through the utilization of neural networks. In contemporary times, there is a growing demand for vehicle surveillance due to the need for efficient vehicle processing and traffic management. The design, development, and implementation of a license plate recognition system hold significant social, economic, and academic importance. The study aims to present contemporary methodologies and empirical findings pertaining to automated license plate recognition. The primary focus of the automatic license plate recognition algorithm was on image extraction, character segmentation, and recognition. The task of character segmentation has been identified as the most challenging function based on my observations. The license plate recognition project that we designed demonstrated the effectiveness of this method across various observed conditions. Particularly in low-light environments, such as during periods of limited illumination or inclement weather characterized by precipitation. The method has been subjected to testing using a sample size of fifty images, resulting in a 100% accuracy rate. The findings of this study demonstrate the project’s ability to effectively determine the optimal outcomes of simulations.展开更多
The 3D reconstruction using deep learning-based intelligent systems can provide great help for measuring an individual’s height and shape quickly and accurately through 2D motion-blurred images.Generally,during the a...The 3D reconstruction using deep learning-based intelligent systems can provide great help for measuring an individual’s height and shape quickly and accurately through 2D motion-blurred images.Generally,during the acquisition of images in real-time,motion blur,caused by camera shaking or human motion,appears.Deep learning-based intelligent control applied in vision can help us solve the problem.To this end,we propose a 3D reconstruction method for motion-blurred images using deep learning.First,we develop a BF-WGAN algorithm that combines the bilateral filtering(BF)denoising theory with a Wasserstein generative adversarial network(WGAN)to remove motion blur.The bilateral filter denoising algorithm is used to remove the noise and to retain the details of the blurred image.Then,the blurred image and the corresponding sharp image are input into the WGAN.This algorithm distinguishes the motion-blurred image from the corresponding sharp image according to the WGAN loss and perceptual loss functions.Next,we use the deblurred images generated by the BFWGAN algorithm for 3D reconstruction.We propose a threshold optimization random sample consensus(TO-RANSAC)algorithm that can remove the wrong relationship between two views in the 3D reconstructed model relatively accurately.Compared with the traditional RANSAC algorithm,the TO-RANSAC algorithm can adjust the threshold adaptively,which improves the accuracy of the 3D reconstruction results.The experimental results show that our BF-WGAN algorithm has a better deblurring effect and higher efficiency than do other representative algorithms.In addition,the TO-RANSAC algorithm yields a calculation accuracy considerably higher than that of the traditional RANSAC algorithm.展开更多
In this paper, with parametric uncertainties such as the mass of vehicle, the inertia of vehicle about vertical axis, and the tire cornering stiffness, we deal with the vehicle lateral control problem in intelligent v...In this paper, with parametric uncertainties such as the mass of vehicle, the inertia of vehicle about vertical axis, and the tire cornering stiffness, we deal with the vehicle lateral control problem in intelligent vehicle systems. Based on the dynamical model of vehicle, by applying Lyapunov function method, the control problem for lane keeping in the presence of parametric uncertainty is studied, the direct adaptive algorithm to compensate for parametric variations is proposed and the terminal sliding mode variable structure control laws are designed with look-ahead references systems. The stability of the system is investigated from the zero dynamics analysis. Simulation results show that convergence rates of the lateral displacement error, yaw angle error and slid angle are fast.展开更多
With the development of high-performance computing,it is possible to solve large-scale computing problems.However,the irregularity and access characteristics of computing problems bring challenges to the realisation a...With the development of high-performance computing,it is possible to solve large-scale computing problems.However,the irregularity and access characteristics of computing problems bring challenges to the realisation and performance optimisation.Improving the performance of a single core makes it challenging to maintain Moore's law,and multi-core processors emerge.A chip brings together multiple universal processor cores of equal status and has the same structure supported by an isomorphic multi-core processor.In high-performance computing,the granularity of computing tasks leads to the complexity of scheduling strategies.Satisfying high system performance,load balancing and processor fault tolerance at a minimum cost is the key to task scheduling in the high-performance field,especially in specific multi-core hardware architecture.In this study,global real-time task scheduling is implemented in a high-performance multi-core system.The system adopts the hybrid scheduling among clusters and the intelligent fitting within clusters to implement the global real-time task scheduling strategy.In the cluster scheduling policy,tasks are allowed to preempt the core with low priority,and the priority of tasks that access memory is dynamically improved,higher than that of all the tasks without memory access.An intelligent fitting method is also proposed.When the data read by the task is in the cache and the cache access ability value of the task is within a reasonable threshold,the priority of the task is promoted to the highest priority,pre-empting the core without the access memory task.The results show that the intelligently fitting global scheduling strategy for multi-core systems has better performance in the nuclear utilisation rate and task schedulability.展开更多
In present digital era,data science techniques exploit artificial intelligence(AI)techniques who start and run small and medium-sized enterprises(SMEs)to have an impact and develop their businesses.Data science integr...In present digital era,data science techniques exploit artificial intelligence(AI)techniques who start and run small and medium-sized enterprises(SMEs)to have an impact and develop their businesses.Data science integrates the conventions of econometrics with the technological elements of data science.It make use of machine learning(ML),predictive and prescriptive analytics to effectively understand financial data and solve related problems.Smart technologies for SMEs enable allows the firm to get smarter with their processes and offers efficient operations.At the same time,it is needed to develop an effective tool which can assist small to medium sized enterprises to forecast business failure as well as financial crisis.AI becomes a familiar tool for several businesses due to the fact that it concentrates on the design of intelligent decision making tools to solve particular real time problems.With this motivation,this paper presents a new AI based optimal functional link neural network(FLNN)based financial crisis prediction(FCP)model forSMEs.The proposed model involves preprocessing,feature selection,classification,and parameter tuning.At the initial stage,the financial data of the enterprises are collected and are preprocessed to enhance the quality of the data.Besides,a novel chaotic grasshopper optimization algorithm(CGOA)based feature selection technique is applied for the optimal selection of features.Moreover,functional link neural network(FLNN)model is employed for the classification of the feature reduced data.Finally,the efficiency of theFLNNmodel can be improvised by the use of cat swarm optimizer(CSO)algorithm.A detailed experimental validation process takes place on Polish dataset to ensure the performance of the presented model.The experimental studies demonstrated that the CGOA-FLNN-CSO model has accomplished maximum prediction accuracy of 98.830%,92.100%,and 95.220%on the applied Polish dataset Year I-III respectively.展开更多
The paper presents the coupling of artificial intelligence-AI and Object-oriented methodology applied for the construction of the model-based decision support system MBDSS.The MBDSS is designed for support the strate...The paper presents the coupling of artificial intelligence-AI and Object-oriented methodology applied for the construction of the model-based decision support system MBDSS.The MBDSS is designed for support the strategic decision making lead to the achievemellt of optimal path towardsmarket economy from the central planning situation in China. To meet user's various requirements,a series of innovations in software development have been carried out, such as system formalization with OBFRAMEs in an object-oriented paradigm for problem solving automation and techniques of modules intelligent cooperation, hybrid system of reasoning, connectionist framework utilization,etc. Integration technology has been highly emphasized and discussed in this article and an outlook to future software engineering is given in the conclusion section.展开更多
Intelligent Transportation System(ITS)is essential for effective identification of vulnerable units in the transport network and its stable operation.Also,it is necessary to establish an urban transport network vulner...Intelligent Transportation System(ITS)is essential for effective identification of vulnerable units in the transport network and its stable operation.Also,it is necessary to establish an urban transport network vulnerability assessment model with solutions based on Internet of Things(IoT).Previous research on vulnerability has no congestion effect on the peak time of urban road network.The cascading failure of links or nodes is presented by IoT monitoring system,which can collect data from a wireless sensor network in the transport environment.The IoT monitoring system collects wireless data via Vehicle-to-Infrastructure(V2I)channels to simulate key segments and their failure probability.Finally,the topological structure vulnerability index and the traffic function vulnerability index of road network are extracted from the vulnerability factors.The two indices are standardized by calculating the relative change rate,and the comprehensive index of the consequence after road network unit is in a failure state.Therefore,by calculating the failure probability of road network unit and comprehensive index of road network unit in failure state,the comprehensive vulnerability of road network can be evaluated by a risk calculation formula.In short,the IoT-based solutions to the new vulnerability assessment can help road network planning and traffic management departments to achieve the ITS goals.展开更多
In this paper the integrative stability is studied for a class of intelligent control systems which are described by an octette structural model. Based on the definitions Of state reachability and stabilizability of i...In this paper the integrative stability is studied for a class of intelligent control systems which are described by an octette structural model. Based on the definitions Of state reachability and stabilizability of intelligent control systems the analysis method and criterion of integrative stability are given.展开更多
Sensory evaluation is the evaluation of signals that a human receives via its senses of sight, smell, taste, touch and hearing. In today’s industrial companies, sensory evaluation is widely used in quality inspection...Sensory evaluation is the evaluation of signals that a human receives via its senses of sight, smell, taste, touch and hearing. In today’s industrial companies, sensory evaluation is widely used in quality inspection of products, in marketing study and in many other fields such as risk evaluation, investment evaluation and safety evaluation. In practice, setting up a suitable mathematical formulation, an efficient working procedure and a pertinent computing method for sensory evaluation is quite difficult because of uncertainty and imprecision in sensory panels and their results involving linguistic expressions, non normalized data, data reliability, etc. At the present a prime problem of the practitioner is not the lack of useful methods but the lack of transparency in this area. In this tutorial lecture, we briefly describe some of the technology in the computational intelligence (CI) areas that has been developed for application to sensory evaluation and related fields. Moreover, we will illustrate the role of CI in sensory evaluation related applications from some recent publications.展开更多
Electrified railways are becoming a popular transport medium and these consume a large amount of electrical energy.Environmental concerns demand reduction in energy use and peak power demand of railway systems.Furthe...Electrified railways are becoming a popular transport medium and these consume a large amount of electrical energy.Environmental concerns demand reduction in energy use and peak power demand of railway systems.Furthermore,high transmission losses in DC railway systems make local storage of energy an increasingly attractive option.An optimisation framework based on genetic algorithms is developed to optimise a DC electric rail network in terms of a comprehensive set of decision variables including storage size,charge/discharge power limits,timetable and train driving style/trajectory to maximise benefits of energy storage in reducing railway peak power and energy consumption.Experimental results for the considered real-world networks show a reduction of energy consumption in the range 15%–30%depending on the train driving style,and reduced power peaks.展开更多
Along with the rapid progress of computer technology, it has become a natural trend that computers are used to handle office routine work to realize office automation. Offered by the Beijing Qinghua Wentong Informatio...Along with the rapid progress of computer technology, it has become a natural trend that computers are used to handle office routine work to realize office automation. Offered by the Beijing Qinghua Wentong Information Technology Company, the Qinghua Wentong intelligent office system is a newly developed and integrated展开更多
This paper presents the technical survey and the trend analysis of the driver support technologies such as a pre-crush braking system in Japan. In the first part, Vehicle Intelligence to assist drivers is defined by t...This paper presents the technical survey and the trend analysis of the driver support technologies such as a pre-crush braking system in Japan. In the first part, Vehicle Intelligence to assist drivers is defined by two objective functions which are both TGA (Target Generation Agent) and TAA (Target Accomplishment Agent). TAA is mainly based on the conventional technologies that are braking smoothly, or driving with lower fuel consumption. On the other hand, TGA has the intelligent function instead of human drivers. The actual TGA are explained using some concrete driver support systems. After that, Japanese market introduction date and evolution of driver support systems are discussed with clarifying cognitive aspects which are the perception support, the judgment support and the execution support. And Key technologies underlying evolution of driver support systems are explained. Finally the author concludes that the knowledge and insights needed for intelligent driver support systems will be much more complex than in the case of autonomous vehicles that drive themselves.展开更多
基金Supported by National Key Research and Development Program of China(Grant No.2021YFB1600402)National Natural Science Foundation of China(Grant No.52072212)+1 种基金Dongfeng USharing Technology Co.,Ltd.,China Intelli‑gent and Connected Vehicles(Beijing)Research Institute Co.,Ltd.“Shuimu Tsinghua Scholarship”of Tsinghua University of China.
文摘Environment perception is one of the most critical technology of intelligent transportation systems(ITS).Motion interaction between multiple vehicles in ITS makes it important to perform multi-object tracking(MOT).However,most existing MOT algorithms follow the tracking-by-detection framework,which separates detection and tracking into two independent segments and limit the global efciency.Recently,a few algorithms have combined feature extraction into one network;however,the tracking portion continues to rely on data association,and requires com‑plex post-processing for life cycle management.Those methods do not combine detection and tracking efciently.This paper presents a novel network to realize joint multi-object detection and tracking in an end-to-end manner for ITS,named as global correlation network(GCNet).Unlike most object detection methods,GCNet introduces a global correlation layer for regression of absolute size and coordinates of bounding boxes,instead of ofsetting predictions.The pipeline of detection and tracking in GCNet is conceptually simple,and does not require compli‑cated tracking strategies such as non-maximum suppression and data association.GCNet was evaluated on a multivehicle tracking dataset,UA-DETRAC,demonstrating promising performance compared to state-of-the-art detectors and trackers.
文摘The exponential increase in IoT device usage has spawned numerous cyberspace innovations.IoT devices,sensors,and actuators bridge the gap between physical processes and the cyber network in a cyber-physical system(CPS).Cyber-physical system is a complex system from a security perspective due to the heterogeneous nature of its components and the fact that IoT devices can serve as an entry point for cyberattacks.Most adversaries design their attack strategies on systems to gain an advantage at a relatively lower cost,whereas abusive adversaries initiate an attack to inflict maximum damage without regard to cost or reward.In this paper,a sensor spoofing attack is modelled as a malicious adversary attempting to cause system failure by interfering with the feedback control mechanism.It is accomplished by feeding spoofed sensor values to the controller and issuing erroneous commands to the actuator.Experiments on a Simulink-simulated linear CPS support the proof of concept for the proposed abusive ideology,demonstrating three attack strategies.The impact of the evaluations stresses the importance of testing the CPS security against adversaries with abusive settings for preventing cyber-vandalism.Finally,the research concludes by highlighting the limitations of the proposed work,followed by recommendations for the future.
基金The work of Vinay Chamola and F.Richard Yu was supported in part by the SICI SICRG Grant through the Project Artificial Intelligence Enabled Security Provisioning and Vehicular Vision Innovations for Autonomous Vehicles,and in part by the Government of Canada's National Crime Prevention Strategy and Natural Sciences and Engineering Research Council of Canada(NSERC)CREATE Program for Building Trust in Connected and Autonomous Vehicles(TrustCAV).
文摘With the rise of the Internet of Vehicles(IoV)and the number of connected vehicles increasing on the roads,Cooperative Intelligent Transportation Systems(C-ITSs)have become an important area of research.As the number of Vehicle to Vehicle(V2V)and Vehicle to Interface(V2I)communication links increases,the amount of data received and processed in the network also increases.In addition,networking interfaces need to be made more secure for which existing cryptography-based security schemes may not be sufficient.Thus,there is a need to augment them with intelligent network intrusion detection techniques.Some machine learning-based intrusion detection and anomaly detection techniques for vehicular networks have been proposed in recent times.However,given the expected large network size,there is a necessity for extensive data processing for use in such anomaly detection methods.Deep learning solutions are lucrative options as they remove the necessity for feature selection.Therefore,with the amount of vehicular network traffic increasing at an unprecedented rate in the C-ITS scenario,the need for deep learning-based techniques is all the more heightened.This work presents three deep learning-based misbehavior classification schemes for intrusion detection in IoV networks using Long Short Term Memory(LSTM)and Convolutional Neural Networks(CNNs).The proposed Deep Learning Classification Engines(DCLE)comprise of single or multi-step classification done by deep learning models that are deployed on the vehicular edge servers.Vehicular data received by the Road Side Units(RSUs)is pre-processed and forwarded to the edge server for classifications following the three classification schemes proposed in this paper.The proposed classifiers identify 18 different vehicular behavior types,the F1-scores ranging from 95.58%to 96.75%,much higher than the existing works.By running the classifiers on testbeds emulating edge servers,the prediction performance and prediction time comparison of the proposed scheme is compared with those of the existing studies.
文摘State departments of transportation’s (DOTs) decisions to invest resources to expand or implement intelligent transportation systems (ITS) programs or even retire existing infrastructure need to be based on performance evaluations. Nonetheless, an apparent gap exists between the need for ITS performance measurements and the actual implementation. The evidence available points to challenges in the ITS performance measurement processes. This paper evaluated the state of practice of performance measurement for ITS across the US and provided insights. A comprehensive literature review assessed the use of performance measures by DOTs for monitoring implemented ITS programs. Based on the gaps identified through the literature review, a nationwide qualitative survey was used to gather insights from key stakeholders on the subject matter and presented in this paper. From the data gathered, performance measurement of ITS is fairly integrated into ITS programs by DOTs, with most agencies considering the process beneficial. There, however, exist reasons that prevent agencies from measuring ITS performance to greater detail and quality. These include lack of data, fragmented or incomparable data formats, the complexity of the endeavor, lack of data scientists, and difficulty assigning responsibilities when inter-agency collaboration is required. Additionally, DOTs do not benchmark or compare their ITS performance with others for reasons that include lack of data, lack of guidance or best practices, and incomparable data formats. This paper is relevant as it provides insights expected to guide DOTs and other agencies in developing or reevaluating their ITS performance measurement processes.
基金Natural Science Foundation of Guangdong Province,Grant/Award Number:2021A1515011847Special Project in Key Fields of Universities in Department of Education of Guangdong Province,Grant/Award Number:2019KZDZX1036+3 种基金Demonstration Bases for Joint Training of Postgraduates of Department of Education of Guangdong Province,Grant/Award Number:202205Key Lab of Digital Signal and Image Processing of Guangdong Province,Grant/Award Number:2019GDDSIPL-01Innovation and Entrepreneurship Training Program for College Students of Guangdong Ocean University,Grant/Award Number:202210566028Postgraduate Education Innovation Plan Project of Guangdong Ocean University,Grant/Award Numbers:202214,202250,202251,202160。
文摘The solving of dynamic matrix square root(DMSR)problems is frequently encountered in many scientific and engineering fields.Although the original zeroing neural network is powerful for solving the DMSR,it cannot vanish the influence of the noise perturbations,and its constant-coefficient design scheme cannot accelerate the convergence speed.Therefore,a noise-tolerate and adaptive coefficient zeroing neural network(NTACZNN)is raised to enhance the robust noise immunity performance and accelerate the conver-gence speed simultaneously.Then,the global convergence and robustness of the pro-posed NTACZNN are theoretically analysed under an ideal environment and noise-perturbed circumstances.Furthermore,some illustrative simulation examples are designed and performed in order to substantiate the efficacy and advantage of the NTACZNN for the DMSR problem solution.Compared with some existing ZNNs,the proposed NTACZNN possesses advanced performance in terms of noise tolerance,solution accuracy,and convergence rate.
基金National Natural Science Foundation of China,Grant/Award Number:61872171The Belt and Road Special Foundation of the State Key Laboratory of Hydrology‐Water Resources and Hydraulic Engineering,Grant/Award Number:2021490811。
文摘Multi‐agent reinforcement learning relies on reward signals to guide the policy networks of individual agents.However,in high‐dimensional continuous spaces,the non‐stationary environment can provide outdated experiences that hinder convergence,resulting in ineffective training performance for multi‐agent systems.To tackle this issue,a novel reinforcement learning scheme,Mutual Information Oriented Deep Skill Chaining(MioDSC),is proposed that generates an optimised cooperative policy by incorporating intrinsic rewards based on mutual information to improve exploration efficiency.These rewards encourage agents to diversify their learning process by engaging in actions that increase the mutual information between their actions and the environment state.In addition,MioDSC can generate cooperative policies using the options framework,allowing agents to learn and reuse complex action sequences and accelerating the convergence speed of multi‐agent learning.MioDSC was evaluated in the multi‐agent particle environment and the StarCraft multi‐agent challenge at varying difficulty levels.The experimental results demonstrate that MioDSC outperforms state‐of‐the‐art methods and is robust across various multi‐agent system tasks with high stability.
文摘With a population of 1.4 billion in China and a huge daily output of kitchen waste,intelligent treatment of kitchen waste is imperative.This article elaborates on the design and implementation of an intelligent monitoring and early warning system from five aspects:system architecture design,hardware equipment selection and configuration,data collection and processing flow,early warning algorithm and model development,and system integration and testing verification.It also points out the advantages of the intelligent monitoring and early warning system in kitchen waste treatment.
文摘Zimbabwe has witnessed the evolution of Information Communication Technology (ICT). The vehicle population soared to above 1.2 million hence rendering the Transport and Insurance domains complex. Therefore, there is a need to look at ways that can augment conventional Vehicular Management Information Systems (VMIS) in transforming business processes through Telematics. This paper aims to contextualise the role that telematics can play in transforming the Insurance Ecosystem in Zimbabwe. The main objective was to investigate the integration of Usage-Based Insurance (UBI) with vehicle tracking solutions provided by technology companies like Econet Wireless in Zimbabwe, aiming to align customer billing with individual risk profiles and enhance the synergy between technology and insurance service providers in the motor insurance ecosystem. A triangulation through structured interviews, questionnaires, and literature review, supported by Information Systems Analysis and Design techniques was conducted. The study adopted a case study approach, qualitatively analyzing the complexities of the Telematics insurance ecosystem in Zimbabwe, informed by the TOGAF framework. A case-study approach was applied to derive themes whilst applying within and cross-case analysis. Data was collected using questionnaires, and interviews. The findings of the research clearly show the importance of Telematics in modern-day insurance and the positive relationship between technology and insurance business performance. The study, therefore revealed how UBI can incentivize positive driver behavior, potentially reducing insurance premiums for safe drivers and lowering the incidence of claims against insurance companies. Future work can be done on studying the role of Telematics in combating highway crime and corruption.
文摘The development of scientific inquiry and research has yielded numerous benefits in the realm of intelligent traffic control systems, particularly in the realm of automatic license plate recognition for vehicles. The design of license plate recognition algorithms has undergone digitalization through the utilization of neural networks. In contemporary times, there is a growing demand for vehicle surveillance due to the need for efficient vehicle processing and traffic management. The design, development, and implementation of a license plate recognition system hold significant social, economic, and academic importance. The study aims to present contemporary methodologies and empirical findings pertaining to automated license plate recognition. The primary focus of the automatic license plate recognition algorithm was on image extraction, character segmentation, and recognition. The task of character segmentation has been identified as the most challenging function based on my observations. The license plate recognition project that we designed demonstrated the effectiveness of this method across various observed conditions. Particularly in low-light environments, such as during periods of limited illumination or inclement weather characterized by precipitation. The method has been subjected to testing using a sample size of fifty images, resulting in a 100% accuracy rate. The findings of this study demonstrate the project’s ability to effectively determine the optimal outcomes of simulations.
基金the National Natural Science Foundation of China under Grant 61902311in part by the Japan Society for the Promotion of Science(JSPS)Grants-in-Aid for Scientific Research(KAKENHI)under Grant JP18K18044.
文摘The 3D reconstruction using deep learning-based intelligent systems can provide great help for measuring an individual’s height and shape quickly and accurately through 2D motion-blurred images.Generally,during the acquisition of images in real-time,motion blur,caused by camera shaking or human motion,appears.Deep learning-based intelligent control applied in vision can help us solve the problem.To this end,we propose a 3D reconstruction method for motion-blurred images using deep learning.First,we develop a BF-WGAN algorithm that combines the bilateral filtering(BF)denoising theory with a Wasserstein generative adversarial network(WGAN)to remove motion blur.The bilateral filter denoising algorithm is used to remove the noise and to retain the details of the blurred image.Then,the blurred image and the corresponding sharp image are input into the WGAN.This algorithm distinguishes the motion-blurred image from the corresponding sharp image according to the WGAN loss and perceptual loss functions.Next,we use the deblurred images generated by the BFWGAN algorithm for 3D reconstruction.We propose a threshold optimization random sample consensus(TO-RANSAC)algorithm that can remove the wrong relationship between two views in the 3D reconstructed model relatively accurately.Compared with the traditional RANSAC algorithm,the TO-RANSAC algorithm can adjust the threshold adaptively,which improves the accuracy of the 3D reconstruction results.The experimental results show that our BF-WGAN algorithm has a better deblurring effect and higher efficiency than do other representative algorithms.In addition,the TO-RANSAC algorithm yields a calculation accuracy considerably higher than that of the traditional RANSAC algorithm.
基金Sponsored by the National Natural Science Foundation of China(Grant No.10772152)
文摘In this paper, with parametric uncertainties such as the mass of vehicle, the inertia of vehicle about vertical axis, and the tire cornering stiffness, we deal with the vehicle lateral control problem in intelligent vehicle systems. Based on the dynamical model of vehicle, by applying Lyapunov function method, the control problem for lane keeping in the presence of parametric uncertainty is studied, the direct adaptive algorithm to compensate for parametric variations is proposed and the terminal sliding mode variable structure control laws are designed with look-ahead references systems. The stability of the system is investigated from the zero dynamics analysis. Simulation results show that convergence rates of the lateral displacement error, yaw angle error and slid angle are fast.
基金National Natural Science Foundation of Heilongjiang Province of China(Outstanding Youth Foundation),Grant/Award Number:JJ2019YX0922Basic Scientific Research Program of China,Grant/Award Number:JCKY2020208B045。
文摘With the development of high-performance computing,it is possible to solve large-scale computing problems.However,the irregularity and access characteristics of computing problems bring challenges to the realisation and performance optimisation.Improving the performance of a single core makes it challenging to maintain Moore's law,and multi-core processors emerge.A chip brings together multiple universal processor cores of equal status and has the same structure supported by an isomorphic multi-core processor.In high-performance computing,the granularity of computing tasks leads to the complexity of scheduling strategies.Satisfying high system performance,load balancing and processor fault tolerance at a minimum cost is the key to task scheduling in the high-performance field,especially in specific multi-core hardware architecture.In this study,global real-time task scheduling is implemented in a high-performance multi-core system.The system adopts the hybrid scheduling among clusters and the intelligent fitting within clusters to implement the global real-time task scheduling strategy.In the cluster scheduling policy,tasks are allowed to preempt the core with low priority,and the priority of tasks that access memory is dynamically improved,higher than that of all the tasks without memory access.An intelligent fitting method is also proposed.When the data read by the task is in the cache and the cache access ability value of the task is within a reasonable threshold,the priority of the task is promoted to the highest priority,pre-empting the core without the access memory task.The results show that the intelligently fitting global scheduling strategy for multi-core systems has better performance in the nuclear utilisation rate and task schedulability.
基金The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work under Grant Number(RGP 1/147/42),www.kku.edu.sa.This research was funded by the Deanship of Scientific Research at Princess Nourah bint Abdulrahman University through the Fast-Track Path of Research Funding Program.
文摘In present digital era,data science techniques exploit artificial intelligence(AI)techniques who start and run small and medium-sized enterprises(SMEs)to have an impact and develop their businesses.Data science integrates the conventions of econometrics with the technological elements of data science.It make use of machine learning(ML),predictive and prescriptive analytics to effectively understand financial data and solve related problems.Smart technologies for SMEs enable allows the firm to get smarter with their processes and offers efficient operations.At the same time,it is needed to develop an effective tool which can assist small to medium sized enterprises to forecast business failure as well as financial crisis.AI becomes a familiar tool for several businesses due to the fact that it concentrates on the design of intelligent decision making tools to solve particular real time problems.With this motivation,this paper presents a new AI based optimal functional link neural network(FLNN)based financial crisis prediction(FCP)model forSMEs.The proposed model involves preprocessing,feature selection,classification,and parameter tuning.At the initial stage,the financial data of the enterprises are collected and are preprocessed to enhance the quality of the data.Besides,a novel chaotic grasshopper optimization algorithm(CGOA)based feature selection technique is applied for the optimal selection of features.Moreover,functional link neural network(FLNN)model is employed for the classification of the feature reduced data.Finally,the efficiency of theFLNNmodel can be improvised by the use of cat swarm optimizer(CSO)algorithm.A detailed experimental validation process takes place on Polish dataset to ensure the performance of the presented model.The experimental studies demonstrated that the CGOA-FLNN-CSO model has accomplished maximum prediction accuracy of 98.830%,92.100%,and 95.220%on the applied Polish dataset Year I-III respectively.
文摘The paper presents the coupling of artificial intelligence-AI and Object-oriented methodology applied for the construction of the model-based decision support system MBDSS.The MBDSS is designed for support the strategic decision making lead to the achievemellt of optimal path towardsmarket economy from the central planning situation in China. To meet user's various requirements,a series of innovations in software development have been carried out, such as system formalization with OBFRAMEs in an object-oriented paradigm for problem solving automation and techniques of modules intelligent cooperation, hybrid system of reasoning, connectionist framework utilization,etc. Integration technology has been highly emphasized and discussed in this article and an outlook to future software engineering is given in the conclusion section.
基金supported by the Shanghai philosophy and social science planning project(2017ECK004).
文摘Intelligent Transportation System(ITS)is essential for effective identification of vulnerable units in the transport network and its stable operation.Also,it is necessary to establish an urban transport network vulnerability assessment model with solutions based on Internet of Things(IoT).Previous research on vulnerability has no congestion effect on the peak time of urban road network.The cascading failure of links or nodes is presented by IoT monitoring system,which can collect data from a wireless sensor network in the transport environment.The IoT monitoring system collects wireless data via Vehicle-to-Infrastructure(V2I)channels to simulate key segments and their failure probability.Finally,the topological structure vulnerability index and the traffic function vulnerability index of road network are extracted from the vulnerability factors.The two indices are standardized by calculating the relative change rate,and the comprehensive index of the consequence after road network unit is in a failure state.Therefore,by calculating the failure probability of road network unit and comprehensive index of road network unit in failure state,the comprehensive vulnerability of road network can be evaluated by a risk calculation formula.In short,the IoT-based solutions to the new vulnerability assessment can help road network planning and traffic management departments to achieve the ITS goals.
文摘In this paper the integrative stability is studied for a class of intelligent control systems which are described by an octette structural model. Based on the definitions Of state reachability and stabilizability of intelligent control systems the analysis method and criterion of integrative stability are given.
文摘Sensory evaluation is the evaluation of signals that a human receives via its senses of sight, smell, taste, touch and hearing. In today’s industrial companies, sensory evaluation is widely used in quality inspection of products, in marketing study and in many other fields such as risk evaluation, investment evaluation and safety evaluation. In practice, setting up a suitable mathematical formulation, an efficient working procedure and a pertinent computing method for sensory evaluation is quite difficult because of uncertainty and imprecision in sensory panels and their results involving linguistic expressions, non normalized data, data reliability, etc. At the present a prime problem of the practitioner is not the lack of useful methods but the lack of transparency in this area. In this tutorial lecture, we briefly describe some of the technology in the computational intelligence (CI) areas that has been developed for application to sensory evaluation and related fields. Moreover, we will illustrate the role of CI in sensory evaluation related applications from some recent publications.
文摘Electrified railways are becoming a popular transport medium and these consume a large amount of electrical energy.Environmental concerns demand reduction in energy use and peak power demand of railway systems.Furthermore,high transmission losses in DC railway systems make local storage of energy an increasingly attractive option.An optimisation framework based on genetic algorithms is developed to optimise a DC electric rail network in terms of a comprehensive set of decision variables including storage size,charge/discharge power limits,timetable and train driving style/trajectory to maximise benefits of energy storage in reducing railway peak power and energy consumption.Experimental results for the considered real-world networks show a reduction of energy consumption in the range 15%–30%depending on the train driving style,and reduced power peaks.
文摘Along with the rapid progress of computer technology, it has become a natural trend that computers are used to handle office routine work to realize office automation. Offered by the Beijing Qinghua Wentong Information Technology Company, the Qinghua Wentong intelligent office system is a newly developed and integrated
文摘This paper presents the technical survey and the trend analysis of the driver support technologies such as a pre-crush braking system in Japan. In the first part, Vehicle Intelligence to assist drivers is defined by two objective functions which are both TGA (Target Generation Agent) and TAA (Target Accomplishment Agent). TAA is mainly based on the conventional technologies that are braking smoothly, or driving with lower fuel consumption. On the other hand, TGA has the intelligent function instead of human drivers. The actual TGA are explained using some concrete driver support systems. After that, Japanese market introduction date and evolution of driver support systems are discussed with clarifying cognitive aspects which are the perception support, the judgment support and the execution support. And Key technologies underlying evolution of driver support systems are explained. Finally the author concludes that the knowledge and insights needed for intelligent driver support systems will be much more complex than in the case of autonomous vehicles that drive themselves.