BACKGROUND Diabetes,a globally escalating health concern,necessitates innovative solutions for efficient detection and management.Blood glucose control is an essential aspect of managing diabetes and finding the most ...BACKGROUND Diabetes,a globally escalating health concern,necessitates innovative solutions for efficient detection and management.Blood glucose control is an essential aspect of managing diabetes and finding the most effective ways to control it.The latest findings suggest that a basal insulin administration rate and a single,highconcentration injection before a meal may not be sufficient to maintain healthy blood glucose levels.While the basal insulin rate treatment can stabilize blood glucose levels over the long term,it may not be enough to bring the levels below the post-meal limit after 60 min.The short-term impacts of meals can be greatly reduced by high-concentration injections,which can help stabilize blood glucose levels.Unfortunately,they cannot provide long-term stability to satisfy the postmeal or pre-meal restrictions.However,proportional-integral-derivative(PID)control with basal dose maintains the blood glucose levels within the range for a longer period.AIM To develop a closed-loop electronic system to pump required insulin into the patient's body automatically in synchronization with glucose sensor readings.METHODS The proposed system integrates a glucose sensor,decision unit,and pumping module to specifically address the pumping of insulin and enhance system effectiveness.Serving as the intelligence hub,the decision unit analyzes data from the glucose sensor to determine the optimal insulin dosage,guided by a pre-existing glucose and insulin level table.The artificial intelligence detection block processes this information,providing decision instructions to the pumping module.Equipped with communication antennas,the glucose sensor and micropump operate in a feedback loop,creating a closed-loop system that eliminates the need for manual intervention.RESULTS The incorporation of a PID controller to assess and regulate blood glucose and insulin levels in individuals with diabetes introduces a sophisticated and dynamic element to diabetes management.The simulation not only allows visualization of how the body responds to different inputs but also offers a valuable tool for predicting and testing the effects of various interventions over time.The PID controller's role in adjusting insulin dosage based on the discrepancy between desired setpoints and actual measurements showcases a proactive strategy for maintaining blood glucose levels within a healthy range.This dynamic feedback loop not only delays the onset of steady-state conditions but also effectively counteracts post-meal spikes in blood glucose.CONCLUSION The WiFi-controlled voltage controller and the PID controller simulation collectively underscore the ongoing efforts to enhance efficiency,safety,and personalized care within the realm of diabetes management.These technological advancements not only contribute to the optimization of insulin delivery systems but also have the potential to reshape our understanding of glucose and insulin dynamics,fostering a new era of precision medicine in the treatment of diabetes.展开更多
Due to associated uncertainties,modelling the spatial distribution of depth to bedrock(DTB) is an important and challenging concern in many geo-engineering applications.The association between DTB,the safety and econo...Due to associated uncertainties,modelling the spatial distribution of depth to bedrock(DTB) is an important and challenging concern in many geo-engineering applications.The association between DTB,the safety and economy of design structures implies that generating more precise predictive models can be of vital interest.In the present study,the challenge of applying an optimally predictive threedimensional(3D) spatial DTB model for an area in Stockholm,Sweden was addressed using an automated intelligent computing design procedure.The process was developed and programmed in both C++and Python to track their performance in specified tasks and also to cover a wide variety of diffe rent internal characteristics and libraries.In comparison to the ordinary Kriging(OK) geostatistical tool,the superiority of the developed automated intelligence system was demonstrated through the analysis of confusion matrices and the ranked accuracies of different statistical errors.The re sults showed that in the absence of measured data,the intelligence models as a flexible and efficient alternative approach can account for associated uncertainties,thus creating more accurate spatial 3D models and providing an appropriate prediction at any point in the subsurface of the study area.展开更多
The cold chain in the production area of fruits and vegetables is the primary link to reduce product loss and improve product quality,but it is also a weak link.With the application of big data technology in cold chai...The cold chain in the production area of fruits and vegetables is the primary link to reduce product loss and improve product quality,but it is also a weak link.With the application of big data technology in cold chain logistics,intelligent devices,and technologies have become important carriers for improving the efficiency of cold chain logistics in fruit and vegetable production areas,extending the shelf life of fruits and vegetables,and reducing fruit and vegetable losses.They have many advantages in fruit and vegetable pre-cooling,sorting and packaging,testing,warehousing,transportation,and other aspects.This article summarizes the rapidly developing and widely used intelligent technologies at home and abroad in recent years,including automated guided vehicle intelligent handling based on electromagnetic or optical technology,intelligent sorting based on sensors,electronic optics,and other technologies,intelligent detection based on computer vision technology,intelligent transportation based on perspective imaging technology,etc.It analyses and studies the innovative research and achievements of various scholars in applying intelligent technology in fruit and vegetable cold chain storage,sorting,detection,transportation,and other links,and improves the efficiency of fruit and vegetable cold chain logistics.However,applying intelligent technology in fruit and vegetable cold chain logistics also faces many problems.The challenges of high cost,difficulty in technological integration,and talent shortages have limited the development of intelligent technology in the field of fruit and vegetable cold chains.To solve the current problems,it is proposed that costs be controlled through independent research and development,technological innovation,and other means to lower the entry threshold for small enterprises.Strengthen integrating intelligent technology and cold chain logistics systems to improve data security and system compatibility.At the same time,the government should introduce relevant policies,provide necessary financial support,and establish talent training mechanisms.Accelerate the development and improvement of intelligent technology standards in the field of cold chain logistics.Through technological innovation,cost control,talent cultivation,and policy guidance,we aim to promote the upgrading of the agricultural industry and provide ideas for improving the quality and efficiency of fruit and vegetable cold chain logistics.展开更多
Agriculture automation is the main concern and emerging subject for every country.The world population is increasing at a very fast rate and with increase in population the need for food increases briskly.Traditional ...Agriculture automation is the main concern and emerging subject for every country.The world population is increasing at a very fast rate and with increase in population the need for food increases briskly.Traditional methods used by farmers aren't sufficient enough to serve the increasing demand and so they have to hamper the soil by using harmful pesticides in an intensified manner.This affects the agricultural practice a lot and in the end the land remains barren with no fertility.This paper talks about different automation practices like IOT,Wireless Communications,Machine learning and Artificial Intelligence,Deep learning.There are some areas which are causing the problems to agriculture field like crop diseases,lack of storage management,pesticide control,weed management,lack of irrigation and water management and all this problems can be solved by above mentioned different techniques.Today,there is an urgent need to decipher the issues like use of harmful pesticides,controlled irrigation,control on pollution and effects of environment in agricultural practice.Automation of farming practices has proved to increase the gain from the soil and also has strengthened the soil fertility.This paper surveys the work of many researchers to get a brief overview about the current implementation of automation in agriculture.The paper also discusses a proposed system which can be implemented in botanical farm for flower and leaf identification and watering using IOT.展开更多
The voltagefluctuation in electric circuits has been identified as key issue in different electric systems.As the usage of electricity growing in rapid way,there exist higherfluctuations in powerflow.To maintain theflow or...The voltagefluctuation in electric circuits has been identified as key issue in different electric systems.As the usage of electricity growing in rapid way,there exist higherfluctuations in powerflow.To maintain theflow or stabi-lity of power in any electric circuit,there are many circuit models are discussed in literature.However,they suffer to maintain the output voltage and not capable of maintaining power stability.To improve the performance in power stabilization,an efficient IC pattern based power factor maximization model(ICPFMM)in this article.The model is focused on improving the power stability with the use of IC(Inductor and Conductor)towards identifying most efficient circuit for the current duty cycle according to the input voltage,voltage in capacitor and output voltage required.The model with boost converter diverts the incoming voltage through number of conductors and inductors.By triggering specific inductor,a specific capacitor gets charged and a particular circuit gets on.The model maintains num-ber of IC(Inductor and Conductor)patterns through which the powerflow occurs.According to that,the pattern available,the mofset controls the level of power to be regulated through any circuit.From the pattern,the model computes the Cir-cuits Switching Loss and Circuits Conduction Loss for various circuits.Accord-ing to the input voltage,the model estimates Circuit Power Stabilization Support(CPSS)according to the voltage available in any capacitor and input voltage.Using the value of CPSS,the model trigger optimal number of circuits to maintain voltage stability.In this approach,more than one circuit has been triggered to maintain output voltage and to get charged.The proposed model not only main-tains power stability but also reduces the wastage in voltage which is not utilized.The proposed model improves the performance in voltage stability with less switching loss.展开更多
Internet of Vehicles(IoV)is an intelligent vehicular technology that allows vehicles to communicate with each other via internet.Communications and the Internet of Things(IoT)enable cutting-edge technologies including...Internet of Vehicles(IoV)is an intelligent vehicular technology that allows vehicles to communicate with each other via internet.Communications and the Internet of Things(IoT)enable cutting-edge technologies including such self-driving cars.In the existing systems,there is a maximum communication delay while transmitting the messages.The proposed system uses hybrid Cooperative,Vehicular Communication Management Framework called CAMINO(CA).Further it uses,energy efficient fast message routing protocol with Common Vulnerability Scoring System(CVSS)methodology for improving the communication delay,throughput.It improves security while transmitting the messages through networks.In this research,we present a unique intelligent vehicular infrastructure communication management framework.This framework includes additional stability for both short and long-range mobile communications.It also includes built-in cooperative intelligent transport system(C-ITS)capabilities for experimental verification in real-world contexts.In addition,an energy efficient-fast message distribution routing protocol(EE-FMDRP)has been presented.This combines the benefits between both temporal and direction oriented routing methods.This has been suggested for distributing information from the origin ends to the predetermined objective in a quick,accurate,and effective manner in the event of an emergency.The critical value scale score(CVSS)employ ratings to measure the assault probability in Markov chains.Probabilities of chained transitions allow us to statistically evaluate the integrity of a group of IoVassets.Thus the proposed method helps to enhance the vehicular systems.The CAMINO with energy efficient fast protocol using CVSS(CA-EEFP-CVSS)method outperforms in terms of shortest transmission latency achieves 2.6 sec,highest throughput 11.6%,and lowest energy usage 17%and PDR 95.78%.展开更多
The main motive of our research work is security enhancement and light energy conservation. This paper describes a study investigating the potential of a controlled office solution by integrating the Internet of Thing...The main motive of our research work is security enhancement and light energy conservation. This paper describes a study investigating the potential of a controlled office solution by integrating the Internet of Things (IoT) with wireless sensor networks (WSNs). A prototype of a smart office is developed using a global system of mobile Bluetooth and Radio Frequency Identification (RFID) technology. The user can turn on and off the fan remotely at any time. This prototype focuses on security and provides human-friendly assistance when in or out of the Office by integrating a mobile application platform. The innovative automated smart Office is designed with intelligent Security doors, lights, alarms, temperature humidifiers, and bright Liquid Crystal Display (LCD) screens for viewing. Our study has opened up virtual possibilities for producing cheap innovative frameworks in this Generation of IoT and the fifth Generation (5G) technology. Therefore, when implemented, this innovation will ease and improve human quality of life. So, this paper aims to provide a low-cost, effective Internet of the things-based automated smart Office.展开更多
The 2012 IEEE Multi-Conference on Systems and Control (MSC 2012) will take place in Dubrovnik Palace Hotel, Dubrovnik, Croatia, on October 3 - 5, 2012. MSC 2012 includes two international con- ferences sponsored and...The 2012 IEEE Multi-Conference on Systems and Control (MSC 2012) will take place in Dubrovnik Palace Hotel, Dubrovnik, Croatia, on October 3 - 5, 2012. MSC 2012 includes two international con- ferences sponsored and promoted by the IEEE Control Systems Society:展开更多
文摘BACKGROUND Diabetes,a globally escalating health concern,necessitates innovative solutions for efficient detection and management.Blood glucose control is an essential aspect of managing diabetes and finding the most effective ways to control it.The latest findings suggest that a basal insulin administration rate and a single,highconcentration injection before a meal may not be sufficient to maintain healthy blood glucose levels.While the basal insulin rate treatment can stabilize blood glucose levels over the long term,it may not be enough to bring the levels below the post-meal limit after 60 min.The short-term impacts of meals can be greatly reduced by high-concentration injections,which can help stabilize blood glucose levels.Unfortunately,they cannot provide long-term stability to satisfy the postmeal or pre-meal restrictions.However,proportional-integral-derivative(PID)control with basal dose maintains the blood glucose levels within the range for a longer period.AIM To develop a closed-loop electronic system to pump required insulin into the patient's body automatically in synchronization with glucose sensor readings.METHODS The proposed system integrates a glucose sensor,decision unit,and pumping module to specifically address the pumping of insulin and enhance system effectiveness.Serving as the intelligence hub,the decision unit analyzes data from the glucose sensor to determine the optimal insulin dosage,guided by a pre-existing glucose and insulin level table.The artificial intelligence detection block processes this information,providing decision instructions to the pumping module.Equipped with communication antennas,the glucose sensor and micropump operate in a feedback loop,creating a closed-loop system that eliminates the need for manual intervention.RESULTS The incorporation of a PID controller to assess and regulate blood glucose and insulin levels in individuals with diabetes introduces a sophisticated and dynamic element to diabetes management.The simulation not only allows visualization of how the body responds to different inputs but also offers a valuable tool for predicting and testing the effects of various interventions over time.The PID controller's role in adjusting insulin dosage based on the discrepancy between desired setpoints and actual measurements showcases a proactive strategy for maintaining blood glucose levels within a healthy range.This dynamic feedback loop not only delays the onset of steady-state conditions but also effectively counteracts post-meal spikes in blood glucose.CONCLUSION The WiFi-controlled voltage controller and the PID controller simulation collectively underscore the ongoing efforts to enhance efficiency,safety,and personalized care within the realm of diabetes management.These technological advancements not only contribute to the optimization of insulin delivery systems but also have the potential to reshape our understanding of glucose and insulin dynamics,fostering a new era of precision medicine in the treatment of diabetes.
基金funded through the support of the Swedish Transport Administration through Better Interactions in Geotechnics(BIG)the Rock engineering Research Foundation(BeFo)Tyrens AB。
文摘Due to associated uncertainties,modelling the spatial distribution of depth to bedrock(DTB) is an important and challenging concern in many geo-engineering applications.The association between DTB,the safety and economy of design structures implies that generating more precise predictive models can be of vital interest.In the present study,the challenge of applying an optimally predictive threedimensional(3D) spatial DTB model for an area in Stockholm,Sweden was addressed using an automated intelligent computing design procedure.The process was developed and programmed in both C++and Python to track their performance in specified tasks and also to cover a wide variety of diffe rent internal characteristics and libraries.In comparison to the ordinary Kriging(OK) geostatistical tool,the superiority of the developed automated intelligence system was demonstrated through the analysis of confusion matrices and the ranked accuracies of different statistical errors.The re sults showed that in the absence of measured data,the intelligence models as a flexible and efficient alternative approach can account for associated uncertainties,thus creating more accurate spatial 3D models and providing an appropriate prediction at any point in the subsurface of the study area.
基金National Natural Science Foundation of China(32301718)Chinese Academy of Agricultural Sciences under the Special Institute-level Coordination Project for Basic Research Operating Costs(S202328)。
文摘The cold chain in the production area of fruits and vegetables is the primary link to reduce product loss and improve product quality,but it is also a weak link.With the application of big data technology in cold chain logistics,intelligent devices,and technologies have become important carriers for improving the efficiency of cold chain logistics in fruit and vegetable production areas,extending the shelf life of fruits and vegetables,and reducing fruit and vegetable losses.They have many advantages in fruit and vegetable pre-cooling,sorting and packaging,testing,warehousing,transportation,and other aspects.This article summarizes the rapidly developing and widely used intelligent technologies at home and abroad in recent years,including automated guided vehicle intelligent handling based on electromagnetic or optical technology,intelligent sorting based on sensors,electronic optics,and other technologies,intelligent detection based on computer vision technology,intelligent transportation based on perspective imaging technology,etc.It analyses and studies the innovative research and achievements of various scholars in applying intelligent technology in fruit and vegetable cold chain storage,sorting,detection,transportation,and other links,and improves the efficiency of fruit and vegetable cold chain logistics.However,applying intelligent technology in fruit and vegetable cold chain logistics also faces many problems.The challenges of high cost,difficulty in technological integration,and talent shortages have limited the development of intelligent technology in the field of fruit and vegetable cold chains.To solve the current problems,it is proposed that costs be controlled through independent research and development,technological innovation,and other means to lower the entry threshold for small enterprises.Strengthen integrating intelligent technology and cold chain logistics systems to improve data security and system compatibility.At the same time,the government should introduce relevant policies,provide necessary financial support,and establish talent training mechanisms.Accelerate the development and improvement of intelligent technology standards in the field of cold chain logistics.Through technological innovation,cost control,talent cultivation,and policy guidance,we aim to promote the upgrading of the agricultural industry and provide ideas for improving the quality and efficiency of fruit and vegetable cold chain logistics.
文摘Agriculture automation is the main concern and emerging subject for every country.The world population is increasing at a very fast rate and with increase in population the need for food increases briskly.Traditional methods used by farmers aren't sufficient enough to serve the increasing demand and so they have to hamper the soil by using harmful pesticides in an intensified manner.This affects the agricultural practice a lot and in the end the land remains barren with no fertility.This paper talks about different automation practices like IOT,Wireless Communications,Machine learning and Artificial Intelligence,Deep learning.There are some areas which are causing the problems to agriculture field like crop diseases,lack of storage management,pesticide control,weed management,lack of irrigation and water management and all this problems can be solved by above mentioned different techniques.Today,there is an urgent need to decipher the issues like use of harmful pesticides,controlled irrigation,control on pollution and effects of environment in agricultural practice.Automation of farming practices has proved to increase the gain from the soil and also has strengthened the soil fertility.This paper surveys the work of many researchers to get a brief overview about the current implementation of automation in agriculture.The paper also discusses a proposed system which can be implemented in botanical farm for flower and leaf identification and watering using IOT.
文摘The voltagefluctuation in electric circuits has been identified as key issue in different electric systems.As the usage of electricity growing in rapid way,there exist higherfluctuations in powerflow.To maintain theflow or stabi-lity of power in any electric circuit,there are many circuit models are discussed in literature.However,they suffer to maintain the output voltage and not capable of maintaining power stability.To improve the performance in power stabilization,an efficient IC pattern based power factor maximization model(ICPFMM)in this article.The model is focused on improving the power stability with the use of IC(Inductor and Conductor)towards identifying most efficient circuit for the current duty cycle according to the input voltage,voltage in capacitor and output voltage required.The model with boost converter diverts the incoming voltage through number of conductors and inductors.By triggering specific inductor,a specific capacitor gets charged and a particular circuit gets on.The model maintains num-ber of IC(Inductor and Conductor)patterns through which the powerflow occurs.According to that,the pattern available,the mofset controls the level of power to be regulated through any circuit.From the pattern,the model computes the Cir-cuits Switching Loss and Circuits Conduction Loss for various circuits.Accord-ing to the input voltage,the model estimates Circuit Power Stabilization Support(CPSS)according to the voltage available in any capacitor and input voltage.Using the value of CPSS,the model trigger optimal number of circuits to maintain voltage stability.In this approach,more than one circuit has been triggered to maintain output voltage and to get charged.The proposed model not only main-tains power stability but also reduces the wastage in voltage which is not utilized.The proposed model improves the performance in voltage stability with less switching loss.
文摘Internet of Vehicles(IoV)is an intelligent vehicular technology that allows vehicles to communicate with each other via internet.Communications and the Internet of Things(IoT)enable cutting-edge technologies including such self-driving cars.In the existing systems,there is a maximum communication delay while transmitting the messages.The proposed system uses hybrid Cooperative,Vehicular Communication Management Framework called CAMINO(CA).Further it uses,energy efficient fast message routing protocol with Common Vulnerability Scoring System(CVSS)methodology for improving the communication delay,throughput.It improves security while transmitting the messages through networks.In this research,we present a unique intelligent vehicular infrastructure communication management framework.This framework includes additional stability for both short and long-range mobile communications.It also includes built-in cooperative intelligent transport system(C-ITS)capabilities for experimental verification in real-world contexts.In addition,an energy efficient-fast message distribution routing protocol(EE-FMDRP)has been presented.This combines the benefits between both temporal and direction oriented routing methods.This has been suggested for distributing information from the origin ends to the predetermined objective in a quick,accurate,and effective manner in the event of an emergency.The critical value scale score(CVSS)employ ratings to measure the assault probability in Markov chains.Probabilities of chained transitions allow us to statistically evaluate the integrity of a group of IoVassets.Thus the proposed method helps to enhance the vehicular systems.The CAMINO with energy efficient fast protocol using CVSS(CA-EEFP-CVSS)method outperforms in terms of shortest transmission latency achieves 2.6 sec,highest throughput 11.6%,and lowest energy usage 17%and PDR 95.78%.
文摘The main motive of our research work is security enhancement and light energy conservation. This paper describes a study investigating the potential of a controlled office solution by integrating the Internet of Things (IoT) with wireless sensor networks (WSNs). A prototype of a smart office is developed using a global system of mobile Bluetooth and Radio Frequency Identification (RFID) technology. The user can turn on and off the fan remotely at any time. This prototype focuses on security and provides human-friendly assistance when in or out of the Office by integrating a mobile application platform. The innovative automated smart Office is designed with intelligent Security doors, lights, alarms, temperature humidifiers, and bright Liquid Crystal Display (LCD) screens for viewing. Our study has opened up virtual possibilities for producing cheap innovative frameworks in this Generation of IoT and the fifth Generation (5G) technology. Therefore, when implemented, this innovation will ease and improve human quality of life. So, this paper aims to provide a low-cost, effective Internet of the things-based automated smart Office.
文摘The 2012 IEEE Multi-Conference on Systems and Control (MSC 2012) will take place in Dubrovnik Palace Hotel, Dubrovnik, Croatia, on October 3 - 5, 2012. MSC 2012 includes two international con- ferences sponsored and promoted by the IEEE Control Systems Society: