The increasing volume of data in the area of environmental sciences needs analysis and interpretation. Among the challenges generated by this “data deluge”, the development of efficient strategies for the knowledge ...The increasing volume of data in the area of environmental sciences needs analysis and interpretation. Among the challenges generated by this “data deluge”, the development of efficient strategies for the knowledge discovery is an important issue. Here, statistical and tools from computational intelligence are applied to analyze large data sets from meteorology and climate sciences. Our approach allows a geographical mapping of the statistical property to be easily interpreted by meteorologists. Our data analysis comprises two main steps of knowledge extraction, applied successively in order to reduce the complexity from the original data set. The goal is to identify a much smaller subset of climatic variables that might still be able to describe or even predict the probability of occurrence of an extreme event. The first step applies a class comparison technique: p-value estimation. The second step consists of a decision tree (DT) configured from the data available and the p-value analysis. The DT is used as a predictive model, identifying the most statistically significant climate variables of the precipitation intensity. The methodology is employed to the study the climatic causes of an extreme precipitation events occurred in Alagoas and Pernambuco States (Brazil) at June/2010.展开更多
Data mining is a procedure of separating covered up,obscure,however possibly valuable data from gigantic data.Huge Data impactsly affects logical disclosures and worth creation.Data mining(DM)with Big Data has been br...Data mining is a procedure of separating covered up,obscure,however possibly valuable data from gigantic data.Huge Data impactsly affects logical disclosures and worth creation.Data mining(DM)with Big Data has been broadly utilized in the lifecycle of electronic items that range from the structure and generation stages to the administration organize.A far reaching examination of DM with Big Data and a survey of its application in the phases of its lifecycle won't just profit scientists to create solid research.As of late huge data have turned into a trendy expression,which constrained the analysts to extend the current data mining methods to adapt to the advanced idea of data and to grow new scientific procedures.In this paper,we build up an exact assessment technique dependent on the standard of Design of Experiment.We apply this technique to assess data mining instruments and AI calculations towards structure huge data examination for media transmission checking data.Two contextual investigations are directed to give bits of knowledge of relations between the necessities of data examination and the decision of an instrument or calculation with regards to data investigation work processes.展开更多
This study aimed to develop a clinical Decision Support Model (DSM) which is software that provides physicians and other healthcare stakeholders with patient-specific assessments and recommendation in aiding clinical ...This study aimed to develop a clinical Decision Support Model (DSM) which is software that provides physicians and other healthcare stakeholders with patient-specific assessments and recommendation in aiding clinical decision-making while discharging Breast cancer patient since the diagnostics and discharge problem is often overwhelming for a clinician to process at the point of care or in urgent situations. The model incorporates Breast cancer patient-specific data that are well-structured having been attained from a prestudy’s administered questionnaires and current evidence-based guidelines. Obtained dataset of the prestudy’s questionnaires is processed via data mining techniques to generate an optimal clinical decision tree classifier model which serves physicians in enhancing their decision-making process while discharging a breast cancer patient on basic cognitive processes involved in medical thinking hence new, better-formed, and superior outcomes. The model also improves the quality of assessments by constructing predictive discharging models from code attributes enabling timely detection of deterioration in the quality of health of a breast cancer patient upon discharge. The outcome of implementing this study is a decision support model that bridges the gap occasioned by less informed clinical Breast cancer discharge that is based merely on experts’ opinions which is insufficiently reinforced for better treatment outcomes. The reinforced discharge decision for better treatment outcomes is through timely deployment of the decision support model to work hand in hand with the expertise in deriving an integrative discharge decision and has been an agreed strategy to eliminate the foreseeable deteriorating quality of health for a discharged breast cancer patients and surging rates of mortality blamed on mistrusted discharge decisions. In this paper, we will discuss breast cancer clinical knowledge, data mining techniques, the classifying model accuracy, and the Python web-based decision support model that predicts avoidable re-hospitalization of a breast cancer patient through an informed clinical discharging support model.展开更多
研究现有元搜索引擎技术,提出了智能型元搜索引擎模型,即采用数据挖掘技术,根据独立型搜索引擎工作情况的记录,动态生成元搜索引擎的调度策略。在对各数据挖掘方法进行比较之后,选择了决策树归纳分类分析技术生成元搜索引擎调用策...研究现有元搜索引擎技术,提出了智能型元搜索引擎模型,即采用数据挖掘技术,根据独立型搜索引擎工作情况的记录,动态生成元搜索引擎的调度策略。在对各数据挖掘方法进行比较之后,选择了决策树归纳分类分析技术生成元搜索引擎调用策略,并详细介绍了调度策略的处理过程、系统评估度量的建立以及用微软最近发布的OLE DB for DM数据挖掘通用接口进行数据挖掘的具体实现。展开更多
新生报到数据中隐藏着大量对学院管理与发展决策具有支持作用的信息,通过简单的统计报表无法发掘这些信息,如果能把先进的数据挖掘技术引进到招生报到系统中,利用Microsoft决策树算法对丰富的新生报到数据进行挖掘,重点对影响报到率的...新生报到数据中隐藏着大量对学院管理与发展决策具有支持作用的信息,通过简单的统计报表无法发掘这些信息,如果能把先进的数据挖掘技术引进到招生报到系统中,利用Microsoft决策树算法对丰富的新生报到数据进行挖掘,重点对影响报到率的内在因素进行发掘,并借助于SQL Server Business Intelligence Development Studio平台,将深奥的理论和技术通过简单、易操作和容易理解的图形、报表等形式展示在领导和主管部门面前,从而能够为学院领导和主管部门在招生决策中提供可靠的决策依据。展开更多
文摘The increasing volume of data in the area of environmental sciences needs analysis and interpretation. Among the challenges generated by this “data deluge”, the development of efficient strategies for the knowledge discovery is an important issue. Here, statistical and tools from computational intelligence are applied to analyze large data sets from meteorology and climate sciences. Our approach allows a geographical mapping of the statistical property to be easily interpreted by meteorologists. Our data analysis comprises two main steps of knowledge extraction, applied successively in order to reduce the complexity from the original data set. The goal is to identify a much smaller subset of climatic variables that might still be able to describe or even predict the probability of occurrence of an extreme event. The first step applies a class comparison technique: p-value estimation. The second step consists of a decision tree (DT) configured from the data available and the p-value analysis. The DT is used as a predictive model, identifying the most statistically significant climate variables of the precipitation intensity. The methodology is employed to the study the climatic causes of an extreme precipitation events occurred in Alagoas and Pernambuco States (Brazil) at June/2010.
文摘Data mining is a procedure of separating covered up,obscure,however possibly valuable data from gigantic data.Huge Data impactsly affects logical disclosures and worth creation.Data mining(DM)with Big Data has been broadly utilized in the lifecycle of electronic items that range from the structure and generation stages to the administration organize.A far reaching examination of DM with Big Data and a survey of its application in the phases of its lifecycle won't just profit scientists to create solid research.As of late huge data have turned into a trendy expression,which constrained the analysts to extend the current data mining methods to adapt to the advanced idea of data and to grow new scientific procedures.In this paper,we build up an exact assessment technique dependent on the standard of Design of Experiment.We apply this technique to assess data mining instruments and AI calculations towards structure huge data examination for media transmission checking data.Two contextual investigations are directed to give bits of knowledge of relations between the necessities of data examination and the decision of an instrument or calculation with regards to data investigation work processes.
文摘This study aimed to develop a clinical Decision Support Model (DSM) which is software that provides physicians and other healthcare stakeholders with patient-specific assessments and recommendation in aiding clinical decision-making while discharging Breast cancer patient since the diagnostics and discharge problem is often overwhelming for a clinician to process at the point of care or in urgent situations. The model incorporates Breast cancer patient-specific data that are well-structured having been attained from a prestudy’s administered questionnaires and current evidence-based guidelines. Obtained dataset of the prestudy’s questionnaires is processed via data mining techniques to generate an optimal clinical decision tree classifier model which serves physicians in enhancing their decision-making process while discharging a breast cancer patient on basic cognitive processes involved in medical thinking hence new, better-formed, and superior outcomes. The model also improves the quality of assessments by constructing predictive discharging models from code attributes enabling timely detection of deterioration in the quality of health of a breast cancer patient upon discharge. The outcome of implementing this study is a decision support model that bridges the gap occasioned by less informed clinical Breast cancer discharge that is based merely on experts’ opinions which is insufficiently reinforced for better treatment outcomes. The reinforced discharge decision for better treatment outcomes is through timely deployment of the decision support model to work hand in hand with the expertise in deriving an integrative discharge decision and has been an agreed strategy to eliminate the foreseeable deteriorating quality of health for a discharged breast cancer patients and surging rates of mortality blamed on mistrusted discharge decisions. In this paper, we will discuss breast cancer clinical knowledge, data mining techniques, the classifying model accuracy, and the Python web-based decision support model that predicts avoidable re-hospitalization of a breast cancer patient through an informed clinical discharging support model.
文摘研究现有元搜索引擎技术,提出了智能型元搜索引擎模型,即采用数据挖掘技术,根据独立型搜索引擎工作情况的记录,动态生成元搜索引擎的调度策略。在对各数据挖掘方法进行比较之后,选择了决策树归纳分类分析技术生成元搜索引擎调用策略,并详细介绍了调度策略的处理过程、系统评估度量的建立以及用微软最近发布的OLE DB for DM数据挖掘通用接口进行数据挖掘的具体实现。
文摘新生报到数据中隐藏着大量对学院管理与发展决策具有支持作用的信息,通过简单的统计报表无法发掘这些信息,如果能把先进的数据挖掘技术引进到招生报到系统中,利用Microsoft决策树算法对丰富的新生报到数据进行挖掘,重点对影响报到率的内在因素进行发掘,并借助于SQL Server Business Intelligence Development Studio平台,将深奥的理论和技术通过简单、易操作和容易理解的图形、报表等形式展示在领导和主管部门面前,从而能够为学院领导和主管部门在招生决策中提供可靠的决策依据。