期刊文献+
共找到39,144篇文章
< 1 2 250 >
每页显示 20 50 100
Building trust for traffic flow forecasting components in intelligent transportation systems via interpretable ensemble learning
1
作者 Jishun Ou Jingyuan Li +2 位作者 Chen Wang Yun Wang Qinghui Nie 《Digital Transportation and Safety》 2024年第3期126-143,I0001,I0002,共20页
Traffic flow forecasting constitutes a crucial component of intelligent transportation systems(ITSs).Numerous studies have been conducted for traffic flow forecasting during the past decades.However,most existing stud... Traffic flow forecasting constitutes a crucial component of intelligent transportation systems(ITSs).Numerous studies have been conducted for traffic flow forecasting during the past decades.However,most existing studies have concentrated on developing advanced algorithms or models to attain state-of-the-art forecasting accuracy.For real-world ITS applications,the interpretability of the developed models is extremely important but has largely been ignored.This study presents an interpretable traffic flow forecasting framework based on popular tree-ensemble algorithms.The framework comprises multiple key components integrated into a highly flexible and customizable multi-stage pipeline,enabling the seamless incorporation of various algorithms and tools.To evaluate the effectiveness of the framework,the developed tree-ensemble models and another three typical categories of baseline models,including statistical time series,shallow learning,and deep learning,were compared on three datasets collected from different types of roads(i.e.,arterial,expressway,and freeway).Further,the study delves into an in-depth interpretability analysis of the most competitive tree-ensemble models using six categories of interpretable machine learning methods.Experimental results highlight the potential of the proposed framework.The tree-ensemble models developed within this framework achieve competitive accuracy while maintaining high inference efficiency similar to statistical time series and shallow learning models.Meanwhile,these tree-ensemble models offer interpretability from multiple perspectives via interpretable machine-learning techniques.The proposed framework is anticipated to provide reliable and trustworthy decision support across various ITS applications. 展开更多
关键词 traffic flow forecasting Interpretable machine learning INTERPRETABILITY Ensemble trees intelligent transportation systems
下载PDF
基于ITSS的智慧教学空间运维体系设计研究
2
作者 李彦朝 《浙江交通职业技术学院学报》 CAS 2024年第3期50-55,共6页
当前数字技术与教学环境深度融合的智慧教学空间极大支持了教学新模式的开展,但存在教学空间内设备和系统复杂且运维工作量逐年增加,以及运维服务工作面临流程难追溯、资源易流失、技术不匹配等诸多问题挑战。借鉴ITSS标准,深入分析智... 当前数字技术与教学环境深度融合的智慧教学空间极大支持了教学新模式的开展,但存在教学空间内设备和系统复杂且运维工作量逐年增加,以及运维服务工作面临流程难追溯、资源易流失、技术不匹配等诸多问题挑战。借鉴ITSS标准,深入分析智慧教学空间运维工作相关要素,针对院校现状及存在问题,以提升管理效率和服务质量为目标,提出构建适合院校智慧教学空间运维实际的高效运维体系。 展开更多
关键词 智慧教学空间 运维体系 itsS 智慧运维
下载PDF
Traffic Sign Detection with Low Complexity for Intelligent Vehicles Based on Hybrid Features
3
作者 Sara Khalid Jamal Hussain Shah +2 位作者 Muhammad Sharif Muhammad Rafiq Gyu Sang Choi 《Computers, Materials & Continua》 SCIE EI 2023年第7期861-879,共19页
Globally traffic signs are used by all countries for healthier traffic flow and to protect drivers and pedestrians.Consequently,traffic signs have been of great importance for every civilized country,which makes resea... Globally traffic signs are used by all countries for healthier traffic flow and to protect drivers and pedestrians.Consequently,traffic signs have been of great importance for every civilized country,which makes researchers give more focus on the automatic detection of traffic signs.Detecting these traffic signs is challenging due to being in the dark,far away,partially occluded,and affected by the lighting or the presence of similar objects.An innovative traffic sign detection method for red and blue signs in color images is proposed to resolve these issues.This technique aimed to devise an efficient,robust and accurate approach.To attain this,initially,the approach presented a new formula,inspired by existing work,to enhance the image using red and green channels instead of blue,which segmented using a threshold calculated from the correlational property of the image.Next,a new set of features is proposed,motivated by existing features.Texture and color features are fused after getting extracted on the channel of Red,Green,and Blue(RGB),Hue,Saturation,and Value(HSV),and YCbCr color models of images.Later,the set of features is employed on different classification frameworks,from which quadratic support vector machine(SVM)outnumbered the others with an accuracy of 98.5%.The proposed method is tested on German Traffic Sign Detection Benchmark(GTSDB)images.The results are satisfactory when compared to the preceding work. 展开更多
关键词 traffic sign detection intelligent systems COMPLEXITY VEHICLES color moments texture features
下载PDF
Systems Theory-Driven Framework for AI Integration into the Holistic Material Basis Research of Traditional Chinese Medicine 被引量:1
4
作者 Jingqi Zeng Xiaobin Jia 《Engineering》 SCIE EI CAS CSCD 2024年第9期28-50,共23页
This paper introduces a systems theory-driven framework to integration artificial intelligence(AI)into traditional Chinese medicine(TCM)research,enhancing the understanding of TCM’s holistic material basis while adhe... This paper introduces a systems theory-driven framework to integration artificial intelligence(AI)into traditional Chinese medicine(TCM)research,enhancing the understanding of TCM’s holistic material basis while adhering to evidence-based principles.Utilizing the System Function Decoding Model(SFDM),the research progresses through define,quantify,infer,and validate phases to systematically explore TCM’s material basis.It employs a dual analytical approach that combines top-down,systems theory-guided perspectives with bottom-up,elements-structure-function methodologies,provides comprehensive insights into TCM’s holistic material basis.Moreover,the research examines AI’s role in quantitative assessment and predictive analysis of TCM’s material components,proposing two specific AIdriven technical applications.This interdisciplinary effort underscores AI’s potential to enhance our understanding of TCM’s holistic material basis and establishes a foundation for future research at the intersection of traditional wisdom and modern technology. 展开更多
关键词 Artificial intelligence systems theory Traditional Chinese medicine Material basis BOTTOM-UP
下载PDF
An Intelligent Adaptive Dynamic Algorithm for a Smart Traffic System
5
作者 Ahmed Alsheikhy Yahia Said Tawfeeq Shawly 《Computer Systems Science & Engineering》 SCIE EI 2023年第7期1109-1126,共18页
Due to excessive car usage,pollution and traffic have increased.In urban cities in Saudi Arabia,such as Riyadh and Jeddah,drivers and air quality suffer from traffic congestion.Although the government has implemented ... Due to excessive car usage,pollution and traffic have increased.In urban cities in Saudi Arabia,such as Riyadh and Jeddah,drivers and air quality suffer from traffic congestion.Although the government has implemented numerous solutions to resolve this issue or reduce its effect on the environment and residents,it still exists and is getting worse.This paper proposes an intelligent,adaptive,practical,and feasible deep learning method for intelligent traffic control.It uses an Internet of Things(IoT)sensor,a camera,and a Convolutional Neural Network(CNN)tool to control traffic in real time.An image segmentation algorithm analyzes inputs from the cameras installed in designated areas.This study considered whether CNNs and IoT technologies could ensure smooth traffic flow in high-speed,high-congestion situations.The presented algorithm calculates traffic density and cars’speeds to determine which lane gets high priority first.A real case study has been conducted on MATLAB to verify and validate the results of this approach.This algorithm estimates the reduced average waiting time during the red light and the suggested time for the green and red lights.An assessment between some literature works and the presented algorithm is also provided.In contrast to traditional traffic management methods,this intelligent and adaptive algorithm reduces traffic congestion,automobile waiting times,and accidents. 展开更多
关键词 Smart traffic control artificial intelligence traffic congestion IOT CNN smart roads
下载PDF
End-to-End Joint Multi-Object Detection and Tracking for Intelligent Transportation Systems
6
作者 Qing Xu Xuewu Lin +6 位作者 Mengchi Cai Yu‑ang Guo Chuang Zhang Kai Li Keqiang Li Jianqiang Wang Dongpu Cao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第5期280-290,共11页
Environment perception is one of the most critical technology of intelligent transportation systems(ITS).Motion interaction between multiple vehicles in ITS makes it important to perform multi-object tracking(MOT).How... Environment perception is one of the most critical technology of intelligent transportation systems(ITS).Motion interaction between multiple vehicles in ITS makes it important to perform multi-object tracking(MOT).However,most existing MOT algorithms follow the tracking-by-detection framework,which separates detection and tracking into two independent segments and limit the global efciency.Recently,a few algorithms have combined feature extraction into one network;however,the tracking portion continues to rely on data association,and requires com‑plex post-processing for life cycle management.Those methods do not combine detection and tracking efciently.This paper presents a novel network to realize joint multi-object detection and tracking in an end-to-end manner for ITS,named as global correlation network(GCNet).Unlike most object detection methods,GCNet introduces a global correlation layer for regression of absolute size and coordinates of bounding boxes,instead of ofsetting predictions.The pipeline of detection and tracking in GCNet is conceptually simple,and does not require compli‑cated tracking strategies such as non-maximum suppression and data association.GCNet was evaluated on a multivehicle tracking dataset,UA-DETRAC,demonstrating promising performance compared to state-of-the-art detectors and trackers. 展开更多
关键词 intelligent transportation systems Joint detection and tracking Global correlation network End-to-end tracking
下载PDF
A deep learning based misbehavior classification scheme for intrusion detection in cooperative intelligent transportation systems
7
作者 Tejasvi Alladi Varun Kohli +1 位作者 Vinay Chamola F.Richard Yu 《Digital Communications and Networks》 SCIE CSCD 2023年第5期1113-1122,共10页
With the rise of the Internet of Vehicles(IoV)and the number of connected vehicles increasing on the roads,Cooperative Intelligent Transportation Systems(C-ITSs)have become an important area of research.As the number ... With the rise of the Internet of Vehicles(IoV)and the number of connected vehicles increasing on the roads,Cooperative Intelligent Transportation Systems(C-ITSs)have become an important area of research.As the number of Vehicle to Vehicle(V2V)and Vehicle to Interface(V2I)communication links increases,the amount of data received and processed in the network also increases.In addition,networking interfaces need to be made more secure for which existing cryptography-based security schemes may not be sufficient.Thus,there is a need to augment them with intelligent network intrusion detection techniques.Some machine learning-based intrusion detection and anomaly detection techniques for vehicular networks have been proposed in recent times.However,given the expected large network size,there is a necessity for extensive data processing for use in such anomaly detection methods.Deep learning solutions are lucrative options as they remove the necessity for feature selection.Therefore,with the amount of vehicular network traffic increasing at an unprecedented rate in the C-ITS scenario,the need for deep learning-based techniques is all the more heightened.This work presents three deep learning-based misbehavior classification schemes for intrusion detection in IoV networks using Long Short Term Memory(LSTM)and Convolutional Neural Networks(CNNs).The proposed Deep Learning Classification Engines(DCLE)comprise of single or multi-step classification done by deep learning models that are deployed on the vehicular edge servers.Vehicular data received by the Road Side Units(RSUs)is pre-processed and forwarded to the edge server for classifications following the three classification schemes proposed in this paper.The proposed classifiers identify 18 different vehicular behavior types,the F1-scores ranging from 95.58%to 96.75%,much higher than the existing works.By running the classifiers on testbeds emulating edge servers,the prediction performance and prediction time comparison of the proposed scheme is compared with those of the existing studies. 展开更多
关键词 Vehicular Ad-hoc Networks(VANETs) intelligent Transportation systems(its) Artificial Intelligence(AI) Deep Learning Internet of Things(IoT)
下载PDF
A Nationwide Evaluation of the State of Practice of Performance Measurements for Intelligent Transportation Systems
8
作者 Kwabena A. Abedi Julius Codjoe Raju Thapa 《Journal of Transportation Technologies》 2023年第2期222-242,共21页
State departments of transportation’s (DOTs) decisions to invest resources to expand or implement intelligent transportation systems (ITS) programs or even retire existing infrastructure need to be based on performan... State departments of transportation’s (DOTs) decisions to invest resources to expand or implement intelligent transportation systems (ITS) programs or even retire existing infrastructure need to be based on performance evaluations. Nonetheless, an apparent gap exists between the need for ITS performance measurements and the actual implementation. The evidence available points to challenges in the ITS performance measurement processes. This paper evaluated the state of practice of performance measurement for ITS across the US and provided insights. A comprehensive literature review assessed the use of performance measures by DOTs for monitoring implemented ITS programs. Based on the gaps identified through the literature review, a nationwide qualitative survey was used to gather insights from key stakeholders on the subject matter and presented in this paper. From the data gathered, performance measurement of ITS is fairly integrated into ITS programs by DOTs, with most agencies considering the process beneficial. There, however, exist reasons that prevent agencies from measuring ITS performance to greater detail and quality. These include lack of data, fragmented or incomparable data formats, the complexity of the endeavor, lack of data scientists, and difficulty assigning responsibilities when inter-agency collaboration is required. Additionally, DOTs do not benchmark or compare their ITS performance with others for reasons that include lack of data, lack of guidance or best practices, and incomparable data formats. This paper is relevant as it provides insights expected to guide DOTs and other agencies in developing or reevaluating their ITS performance measurement processes. 展开更多
关键词 intelligent Transportation systems its Performance Measures its Architecture ARC-IT Qualitative Survey EVALUATION NATIONWIDE
下载PDF
Intelligent 3-Way Priority-Driven Traffic Light Control System for Emergency Vehicles
9
作者 Joe Essien Felix Uloko 《Open Journal of Applied Sciences》 2023年第8期1207-1223,共17页
The problem of traffic congestion is a significant phenomenon that has had a substantial impact on the transportation system within the country. This phenomenon has given rise to numerous intricacies, particularly in ... The problem of traffic congestion is a significant phenomenon that has had a substantial impact on the transportation system within the country. This phenomenon has given rise to numerous intricacies, particularly in instances where emergency situations occur at traffic light intersections that are consistently congested with a high volume of vehicles. This implementation of a traffic light controller system is designed with the intention of addressing this problem. The purpose of the system was to facilitate the operation of a 3-way traffic control light and provide priority to emergency vehicles using a Radio Frequency Identification (RFID) sensor and Reduced Instruction Set Computing (RISC) Architecture Based Microcontroller. This research work involved designing a system to mitigate the occurrence of accidents commonly observed at traffic light intersections, where vehicles often need to maneuver in order to make way for emergency vehicles following a designated route. The research effectively achieved the analysis, simulation and implementation of wireless communication devices for traffic light control. The implemented prototype utilizes RFID transmission, operates in conjunction with the sequential mode of traffic lights to alter the traffic light sequence accordingly and reverts the traffic lights back to their normal sequence after the emergency vehicle has passed the traffic lights. 展开更多
关键词 RFID Sensors MICROCONTROLLER traffic Light Control System RISC Architecture intelligent systems
下载PDF
Predicting Traffic Flow Using Dynamic Spatial-Temporal Graph Convolution Networks
10
作者 Yunchang Liu Fei Wan Chengwu Liang 《Computers, Materials & Continua》 SCIE EI 2024年第3期4343-4361,共19页
Traffic flow prediction plays a key role in the construction of intelligent transportation system.However,due to its complex spatio-temporal dependence and its uncertainty,the research becomes very challenging.Most of... Traffic flow prediction plays a key role in the construction of intelligent transportation system.However,due to its complex spatio-temporal dependence and its uncertainty,the research becomes very challenging.Most of the existing studies are based on graph neural networks that model traffic flow graphs and try to use fixed graph structure to deal with the relationship between nodes.However,due to the time-varying spatial correlation of the traffic network,there is no fixed node relationship,and these methods cannot effectively integrate the temporal and spatial features.This paper proposes a novel temporal-spatial dynamic graph convolutional network(TSADGCN).The dynamic time warping algorithm(DTW)is introduced to calculate the similarity of traffic flow sequence among network nodes in the time dimension,and the spatiotemporal graph of traffic flow is constructed to capture the spatiotemporal characteristics and dependencies of traffic flow.By combining graph attention network and time attention network,a spatiotemporal convolution block is constructed to capture spatiotemporal characteristics of traffic data.Experiments on open data sets PEMSD4 and PEMSD8 show that TSADGCN has higher prediction accuracy than well-known traffic flow prediction algorithms. 展开更多
关键词 intelligent transportation graph convolutional network traffic flow DTW algorithm attention mechanism
下载PDF
Traffic Control Based on Integrated Kalman Filtering and Adaptive Quantized Q-Learning Framework for Internet of Vehicles
11
作者 Othman S.Al-Heety Zahriladha Zakaria +4 位作者 Ahmed Abu-Khadrah Mahamod Ismail Sarmad Nozad Mahmood Mohammed Mudhafar Shakir Hussein Alsariera 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2103-2127,共25页
Intelligent traffic control requires accurate estimation of the road states and incorporation of adaptive or dynamically adjusted intelligent algorithms for making the decision.In this article,these issues are handled... Intelligent traffic control requires accurate estimation of the road states and incorporation of adaptive or dynamically adjusted intelligent algorithms for making the decision.In this article,these issues are handled by proposing a novel framework for traffic control using vehicular communications and Internet of Things data.The framework integrates Kalman filtering and Q-learning.Unlike smoothing Kalman filtering,our data fusion Kalman filter incorporates a process-aware model which makes it superior in terms of the prediction error.Unlike traditional Q-learning,our Q-learning algorithm enables adaptive state quantization by changing the threshold of separating low traffic from high traffic on the road according to the maximum number of vehicles in the junction roads.For evaluation,the model has been simulated on a single intersection consisting of four roads:east,west,north,and south.A comparison of the developed adaptive quantized Q-learning(AQQL)framework with state-of-the-art and greedy approaches shows the superiority of AQQL with an improvement percentage in terms of the released number of vehicles of AQQL is 5%over the greedy approach and 340%over the state-of-the-art approach.Hence,AQQL provides an effective traffic control that can be applied in today’s intelligent traffic system. 展开更多
关键词 Q-LEARNING intelligent transportation system(its) traffic control vehicular communication kalman filtering smart city Internet of Things
下载PDF
Fortifying Smart Grids: A Holistic Assessment Strategy against Cyber Attacks and Physical Threats for Intelligent Electronic Devices
12
作者 Yangrong Chen June Li +4 位作者 Yu Xia Ruiwen Zhang Lingling Li Xiaoyu Li Lin Ge 《Computers, Materials & Continua》 SCIE EI 2024年第8期2579-2609,共31页
Intelligent electronic devices(IEDs)are interconnected via communication networks and play pivotal roles in transmitting grid-related operational data and executing control instructions.In the context of the heightene... Intelligent electronic devices(IEDs)are interconnected via communication networks and play pivotal roles in transmitting grid-related operational data and executing control instructions.In the context of the heightened security challenges within smart grids,IEDs pose significant risks due to inherent hardware and software vulner-abilities,as well as the openness and vulnerability of communication protocols.Smart grid security,distinct from traditional internet security,mainly relies on monitoring network security events at the platform layer,lacking an effective assessment mechanism for IEDs.Hence,we incorporate considerations for both cyber-attacks and physical faults,presenting security assessment indicators and methods specifically tailored for IEDs.Initially,we outline the security monitoring technology for IEDs,considering the necessary data sources for their security assessment.Subsequently,we classify IEDs and establish a comprehensive security monitoring index system,incorporating factors such as running states,network traffic,and abnormal behaviors.This index system contains 18 indicators in 3 categories.Additionally,we elucidate quantitative methods for various indicators and propose a hybrid security assessment method known as GRCW-hybrid,combining grey relational analysis(GRA),analytic hierarchy process(AHP),and entropy weight method(EWM).According to the proposed assessment method,the security risk level of IEDs can be graded into 6 levels,namely 0,1,2,3,4,and 5.The higher the level,the greater the security risk.Finally,we assess and simulate 15 scenarios in 3 categories,which are based on monitoring indicators and real-world situations encountered by IEDs.The results show that calculated security risk level based on the proposed assessment method are consistent with actual simulation.Thus,the reasonableness and effectiveness of the proposed index system and assessment method are validated. 展开更多
关键词 Smart grid intelligent electronic device security assessment abnormal behaviors network traffic running states
下载PDF
Real-Time Prediction of Urban Traffic Problems Based on Artificial Intelligence-Enhanced Mobile Ad Hoc Networks(MANETS)
13
作者 Ahmed Alhussen Arshiya S.Ansari 《Computers, Materials & Continua》 SCIE EI 2024年第5期1903-1923,共21页
Traffic in today’s cities is a serious problem that increases travel times,negatively affects the environment,and drains financial resources.This study presents an Artificial Intelligence(AI)augmentedMobile Ad Hoc Ne... Traffic in today’s cities is a serious problem that increases travel times,negatively affects the environment,and drains financial resources.This study presents an Artificial Intelligence(AI)augmentedMobile Ad Hoc Networks(MANETs)based real-time prediction paradigm for urban traffic challenges.MANETs are wireless networks that are based on mobile devices and may self-organize.The distributed nature of MANETs and the power of AI approaches are leveraged in this framework to provide reliable and timely traffic congestion forecasts.This study suggests a unique Chaotic Spatial Fuzzy Polynomial Neural Network(CSFPNN)technique to assess real-time data acquired from various sources within theMANETs.The framework uses the proposed approach to learn from the data and create predictionmodels to detect possible traffic problems and their severity in real time.Real-time traffic prediction allows for proactive actions like resource allocation,dynamic route advice,and traffic signal optimization to reduce congestion.The framework supports effective decision-making,decreases travel time,lowers fuel use,and enhances overall urban mobility by giving timely information to pedestrians,drivers,and urban planners.Extensive simulations and real-world datasets are used to test the proposed framework’s prediction accuracy,responsiveness,and scalability.Experimental results show that the suggested framework successfully anticipates urban traffic issues in real-time,enables proactive traffic management,and aids in creating smarter,more sustainable cities. 展开更多
关键词 Mobile AdHocNetworks(MANET) urban traffic prediction artificial intelligence(AI) traffic congestion chaotic spatial fuzzy polynomial neural network(CSFPNN)
下载PDF
AI-Driven Learning Management Systems:Modern Developments, Challenges and Future Trends during theAge of ChatGPT
14
作者 Sameer Qazi Muhammad Bilal Kadri +4 位作者 Muhammad Naveed Bilal AKhawaja Sohaib Zia Khan Muhammad Mansoor Alam Mazliham Mohd Su’ud 《Computers, Materials & Continua》 SCIE EI 2024年第8期3289-3314,共26页
COVID-19 pandemic restrictions limited all social activities to curtail the spread of the virus.The foremost and most prime sector among those affected were schools,colleges,and universities.The education system of en... COVID-19 pandemic restrictions limited all social activities to curtail the spread of the virus.The foremost and most prime sector among those affected were schools,colleges,and universities.The education system of entire nations had shifted to online education during this time.Many shortcomings of Learning Management Systems(LMSs)were detected to support education in an online mode that spawned the research in Artificial Intelligence(AI)based tools that are being developed by the research community to improve the effectiveness of LMSs.This paper presents a detailed survey of the different enhancements to LMSs,which are led by key advances in the area of AI to enhance the real-time and non-real-time user experience.The AI-based enhancements proposed to the LMSs start from the Application layer and Presentation layer in the form of flipped classroom models for the efficient learning environment and appropriately designed UI/UX for efficient utilization of LMS utilities and resources,including AI-based chatbots.Session layer enhancements are also required,such as AI-based online proctoring and user authentication using Biometrics.These extend to the Transport layer to support real-time and rate adaptive encrypted video transmission for user security/privacy and satisfactory working of AI-algorithms.It also needs the support of the Networking layer for IP-based geolocation features,the Virtual Private Network(VPN)feature,and the support of Software-Defined Networks(SDN)for optimum Quality of Service(QoS).Finally,in addition to these,non-real-time user experience is enhanced by other AI-based enhancements such as Plagiarism detection algorithms and Data Analytics. 展开更多
关键词 Learning management systems chatbots ChatGPT online education Internet of Things(IoT) artificial intelligence(AI) convolutional neural networks natural language processing
下载PDF
Energy-efficient joint UAV secure communication and 3D trajectory optimization assisted by reconfigurable intelligent surfaces in the presence of eavesdroppers
15
作者 Huang Hailong Mohsen Eskandari +1 位作者 Andrey V.Savkin Wei Ni 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期537-543,共7页
We consider a scenario where an unmanned aerial vehicle(UAV),a typical unmanned aerial system(UAS),transmits confidential data to a moving ground target in the presence of multiple eavesdroppers.Multiple friendly reco... We consider a scenario where an unmanned aerial vehicle(UAV),a typical unmanned aerial system(UAS),transmits confidential data to a moving ground target in the presence of multiple eavesdroppers.Multiple friendly reconfigurable intelligent surfaces(RISs) help to secure the UAV-target communication and improve the energy efficiency of the UAV.We formulate an optimization problem to minimize the energy consumption of the UAV,subject to the mobility constraint of the UAV and that the achievable secrecy rate at the target is over a given threshold.We present an online planning method following the framework of model predictive control(MPC) to jointly optimize the motion of the UAV and the configurations of the RISs.The effectiveness of the proposed method is validated via computer simulations. 展开更多
关键词 Unmanned aerial systems(UASs) Unmanned aerial vehicle(UAV) Communication security Eaves-dropping Reconfigurable intelligent surfaces(RIS) Autonomous navigation and placement Path planning Model predictive control
下载PDF
Day-to-day traffic user equilibrium model considering influence of intelligent highways and advanced traveler information systems
16
作者 SUN Chao CHU Zhao-ming +1 位作者 ZHANG Peng CHANG Yu-lin 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第4期1376-1388,共13页
To explore the influence of intelligent highways and advanced traveler information systems(ATIS)on path choice behavior,a day-to-day(DTD)traffic flow evolution model with information from intelligent highways and ATIS... To explore the influence of intelligent highways and advanced traveler information systems(ATIS)on path choice behavior,a day-to-day(DTD)traffic flow evolution model with information from intelligent highways and ATIS is proposed,whereby the network reliability and experiential learning theory are introduced into the decision process for the travelers’route choice.The intelligent highway serves all the travelers who drive on it,whereas ATIS serves vehicles equipped with information systems.Travelers who drive on intelligent highways or vehicles equipped with ATIS determine their trip routes based on real-time traffic information,whereas other travelers use both the road network conditions from the previous day and historical travel experience to choose a route.Both roadway capacity degradation and travel demand fluctuations are considered to demonstrate the uncertainties in the network.The theory of traffic network flow is developed to build a DTD model considering information from intelligent highway and ATIS.The fixed point theorem is adopted to investigate the equivalence,existence and stability of the proposed DTD model.Numerical examples illustrate that using a high confidence level and weight parameter for the traffic flow reduces the stability of the proposed model.The traffic flow reaches a steady state as travelers’routes shift with repetitive learning of road conditions.The proposed model can be used to formulate scientific traffic organization and diversion schemes during road expansion or reconstruction. 展开更多
关键词 day-to-day model intelligent highway advanced traveler information systems UNCERTAINTY
下载PDF
Design and Implementation of an Intelligent Monitoring and Early Warning System for Kitchen Garbage Treatment
17
作者 Dexian HUANG Binjun GAN 《Meteorological and Environmental Research》 2024年第3期68-71,共4页
With a population of 1.4 billion in China and a huge daily output of kitchen waste,intelligent treatment of kitchen waste is imperative.This article elaborates on the design and implementation of an intelligent monito... With a population of 1.4 billion in China and a huge daily output of kitchen waste,intelligent treatment of kitchen waste is imperative.This article elaborates on the design and implementation of an intelligent monitoring and early warning system from five aspects:system architecture design,hardware equipment selection and configuration,data collection and processing flow,early warning algorithm and model development,and system integration and testing verification.It also points out the advantages of the intelligent monitoring and early warning system in kitchen waste treatment. 展开更多
关键词 Environmental sanitation Ecological environment Garbage disposal intelligent systems
下载PDF
Cooperative Distributed Beamforming Design for Multi-RIS Aided Cell-Free Systems
18
作者 ZHU Yuting XU Zhiyu ZHANG Hongtao 《ZTE Communications》 2024年第2期99-106,共8页
Cell-free systems significantly improve network capacity by enabling joint user service without cell boundaries,eliminating intercell interference.However,to satisfy further capacity demands,it leads to high-cost prob... Cell-free systems significantly improve network capacity by enabling joint user service without cell boundaries,eliminating intercell interference.However,to satisfy further capacity demands,it leads to high-cost problems of both hardware and power consumption.In this paper,we investigate multiple reconfigurable intelligent surfaces(RISs)aided cell-free systems where RISs are introduced to improve spectrum efficiency in an energy-efficient way.To overcome the centralized high complexity and avoid frequent information exchanges,a cooperative distributed beamforming design is proposed to maximize the weighted sum-rate performance.In particular,the alternating optimization method is utilized with the distributed closed-form solution of active beamforming being derived locally at access points,and phase shifts are obtained centrally based on the Riemannian conjugate gradient(RCG)manifold method.Simulation results verify the effectiveness of the proposed design whose performance is comparable to the centralized scheme and show great superiority of the RISs-aided system over the conventional cellular and cell-free system. 展开更多
关键词 cell-free systems reconfigurable intelligent surface cooperative distributed beamforming Riemannian conjugate gradient
下载PDF
Multi-Head Attention Spatial-Temporal Graph Neural Networks for Traffic Forecasting
19
作者 Xiuwei Hu Enlong Yu Xiaoyu Zhao 《Journal of Computer and Communications》 2024年第3期52-67,共16页
Accurate traffic prediction is crucial for an intelligent traffic system (ITS). However, the excessive non-linearity and complexity of the spatial-temporal correlation in traffic flow severely limit the prediction acc... Accurate traffic prediction is crucial for an intelligent traffic system (ITS). However, the excessive non-linearity and complexity of the spatial-temporal correlation in traffic flow severely limit the prediction accuracy of most existing models, which simply stack temporal and spatial modules and fail to capture spatial-temporal features effectively. To improve the prediction accuracy, a multi-head attention spatial-temporal graph neural network (MSTNet) is proposed in this paper. First, the traffic data is decomposed into unique time spans that conform to positive rules, and valuable traffic node attributes are mined through an adaptive graph structure. Second, time and spatial features are captured using a multi-head attention spatial-temporal module. Finally, a multi-step prediction module is used to achieve future traffic condition prediction. Numerical experiments were conducted on an open-source dataset, and the results demonstrate that MSTNet performs well in spatial-temporal feature extraction and achieves more positive forecasting results than the baseline methods. 展开更多
关键词 traffic Prediction intelligent traffic System Multi-Head Attention Graph Neural Networks
下载PDF
Analyze the Impact of ITS in Improving the Efficiency of Road Tax and Fee Collection Use of Digital Technologies in the City of Bujumbura
20
作者 Fiston Niyonkuru Ilundu Wail Walumbuka Jérémie Ndikumagenge 《Open Journal of Applied Sciences》 2024年第6期1464-1473,共10页
Road transport is currently one of the most important sectors affecting sustainable development and the improvement of the population’s standard of living. In some sub-Saharan African countries, including Burundi, th... Road transport is currently one of the most important sectors affecting sustainable development and the improvement of the population’s standard of living. In some sub-Saharan African countries, including Burundi, the transport structure is vulnerable, under attack, or even damaged or destroyed. This is prompting decision-makers to look for every possible way to enable dynamic management of the road system, as well as the collection of tax revenues attributable to this sector. To reach this stage, we postulate that the introduction of the Intelligent Transport System (ITS) into the road tax and fee collection process would make a significant contribution (road safety, zero cash on silk Safety Officers, payment of a fine, eradication of road corruption etc.) to the digitization of the various transport sectors. As far as the city of Bujumbura is concerned (our field of intervention), the applicability of the present System could thus meet the expectations of the decision-maker, certain drivers and, by the same token, contribute to the promotion of Digital Technology in Burundi. 展开更多
关键词 intelligent Transport System Infra-Red Sensor Network OCR Algorithm Vision systems Multi-Agent System
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部