期刊文献+
共找到1,055篇文章
< 1 2 53 >
每页显示 20 50 100
Efficient Intelligent E-Learning Behavior-Based Analytics of Student’s Performance Using Deep Forest Model
1
作者 Raed Alotaibi Omar Reyad Mohamed Esmail Karar 《Computer Systems Science & Engineering》 2024年第5期1133-1147,共15页
E-learning behavior data indicates several students’activities on the e-learning platform such as the number of accesses to a set of resources and number of participants in lectures.This article proposes a new analyt... E-learning behavior data indicates several students’activities on the e-learning platform such as the number of accesses to a set of resources and number of participants in lectures.This article proposes a new analytics systemto support academic evaluation for students via e-learning activities to overcome the challenges faced by traditional learning environments.The proposed e-learning analytics system includes a new deep forest model.It consists of multistage cascade random forests with minimal hyperparameters compared to traditional deep neural networks.The developed forest model can analyze each student’s activities during the use of an e-learning platform to give accurate expectations of the student’s performance before ending the semester and/or the final exam.Experiments have been conducted on the Open University Learning Analytics Dataset(OULAD)of 32,593 students.Our proposed deep model showed a competitive accuracy score of 98.0%compared to artificial intelligence-based models,such as ConvolutionalNeuralNetwork(CNN)and Long Short-TermMemory(LSTM)in previous studies.That allows academic advisors to support expected failed students significantly and improve their academic level at the right time.Consequently,the proposed analytics system can enhance the quality of educational services for students in an innovative e-learning framework. 展开更多
关键词 E-learning behavior data student evaluation artificial intelligence machine learning
下载PDF
In-class language learning strategies used by Thai pre-university students: Factor analysis
2
作者 Duangporn Sriboonruang Channarong Intaraprasert 《Sino-US English Teaching》 2010年第3期23-33,共11页
The purpose of this study was to explore factors related to strategy use of Thai pre-university students in Thailand. The subjects of the investigation were selected based on convenience and availability. A researcher... The purpose of this study was to explore factors related to strategy use of Thai pre-university students in Thailand. The subjects of the investigation were selected based on convenience and availability. A researcher-generated language learning strategy questionnaire with the Alpha coefficient (α). 96 were used as the main instrument for the data collection. The questionnaire was designed based on information taken from the students' interview. The variables for the present investigation include extra-class support and level of language proficiency. The four extracted factors emerged as a result of varimax rotation conducted on the correlations of 20 in-class language learning strategies, which varied significantly in relation to the two variables. The four factors includes Factor 1 strategies for strategies for the classroom preparation, Factor 2 strategies for learning new vocabulary in the classroom lessons, Factor 3 strategies for solving classroom problems, and Factor 4 strategies for concentrating while studying in class. The result of the varimax rotation shows that all of the four factors were found strongly related to extra-class support and level of language proficiency. 展开更多
关键词 language learning strategies factor analysis pre-university students
下载PDF
Survey and Analysis of Chinese Learning Needs of International Students-A Case Study of International Students Majoring in MBA and MPA in a College of The Belt and Road
3
作者 LI Jia-xin BAO Wen-jing LU Yue-li 《Journal of Literature and Art Studies》 2022年第3期301-309,共9页
This study investigated the Chinese learning motivation,learning goals and learning strategies of 26 international students majoring in MBA and MPA at a university with The belt and road college,mainly by questionnair... This study investigated the Chinese learning motivation,learning goals and learning strategies of 26 international students majoring in MBA and MPA at a university with The belt and road college,mainly by questionnaire and interview method,supplemented by classroom observation method.The survey found that 20 of the 24 international students were zero-start Chinese learners,and their learning motivation was mainly"instrumental"and"intrinsic",and they had high enthusiasm for Chinese language and Chinese culture.They have a high enthusiasm for Chinese language and culture,and will actively solve the difficulties they encounter in learning Chinese.At the same time,this study conducted a questionnaire survey on the needs of international students in terms of curriculum and content,teaching materials,teaching assessment and extracurricular activities,combined with the results of individual and group interviews and classroom observations,to summarize the real needs of international students in various aspects of Chinese language learning,so as to provide teaching reference for teachers teaching international students,and to provide a reference for colleges and universities to develop Chinese teaching programs.The survey will provide a basis for the colleges and universities to formulate Chinese teaching programs and coordinate teaching activities,so as to help international students learn Chinese better. 展开更多
关键词 One Belt and One Road international students in China Chinese language learning learning needs analysis
下载PDF
Analysis on the status and influencing factors of undergraduate nursing students’ online learning engagement in the context of the pandemic
4
作者 Lian-Di Ding Ming-Jin Li 《TMR Integrative Nursing》 2021年第4期120-126,共7页
Objective:This project has mainly studied the online learning engagement of undergraduate nursing students and analyzes influencing factors of online learning and teaching mode during the Novel Coronavirus(COVID-19).T... Objective:This project has mainly studied the online learning engagement of undergraduate nursing students and analyzes influencing factors of online learning and teaching mode during the Novel Coronavirus(COVID-19).This research has significant references for improving the efficiency and quality of the online learning mode of students.Methods:In this study,212 undergraduate nursing students were selected from a comprehensive university in Jilin Province by combining convenience sampling and cluster sampling methods.And these students were conducted with a general information questionnaire,Online Academic Emotion Scale,and Online Learning Engagement Scale.The influencing factors of this teaching mode were analyzed by multiple linear stepwise regression.Results:The total score of online learning engagement of undergraduate students was 53.85±7.38,which positively correlated with positive high arousal emotion and negative high arousal emotion,but weakly negatively correlated with negative low arousal emotion(r=0.661,0.246,-0.187,P<0.001).Grade,type of online class,online learning time,and positively high arousal emotion were mainly affected the online learning engagement of undergraduate nursing students,which explained 78.5%of the total variation(P<0.001).Conclusion:The online learning engagement of undergraduate nursing students was above the middle level under the background of the COVID-19 pandemic.Lectures and professors who teach undergraduate nursing students,should integrate the individuation characters of nursing students,and motivate their positively high arousal emotion to improve online learning engagement of students to ensure the quality of online teaching mode. 展开更多
关键词 Undergraduate nursing students Online learning engagement Online academic emotion Root cause analysis
下载PDF
A Deep Learning-Based Computational Algorithm for Identifying Damage Load Condition: An Artificial Intelligence Inverse Problem Solution for Failure Analysis 被引量:6
5
作者 Shaofei Ren Guorong Chen +2 位作者 Tiange Li Qijun Chen Shaofan Li 《Computer Modeling in Engineering & Sciences》 SCIE EI 2018年第12期287-307,共21页
In this work,we have developed a novel machine(deep)learning computational framework to determine and identify damage loading parameters(conditions)for structures and materials based on the permanent or residual plast... In this work,we have developed a novel machine(deep)learning computational framework to determine and identify damage loading parameters(conditions)for structures and materials based on the permanent or residual plastic deformation distribution or damage state of the structure.We have shown that the developed machine learning algorithm can accurately and(practically)uniquely identify both prior static as well as impact loading conditions in an inverse manner,based on the residual plastic strain and plastic deformation as forensic signatures.The paper presents the detailed machine learning algorithm,data acquisition and learning processes,and validation/verification examples.This development may have significant impacts on forensic material analysis and structure failure analysis,and it provides a powerful tool for material and structure forensic diagnosis,determination,and identification of damage loading conditions in accidental failure events,such as car crashes and infrastructure or building structure collapses. 展开更多
关键词 Artificial intelligence(AI) deep learning forensic materials engineering PLASTIC DEFORMATION structural FAILURE analysis.
下载PDF
Machine learning in solid organ transplantation:Charting the evolving landscape
6
作者 Badi Rawashdeh Haneen Al-abdallat +3 位作者 Emre Arpali Beje Thomas Ty B Dunn Matthew Cooper 《World Journal of Transplantation》 2025年第1期165-177,共13页
BACKGROUND Machine learning(ML),a major branch of artificial intelligence,has not only demonstrated the potential to significantly improve numerous sectors of healthcare but has also made significant contributions to ... BACKGROUND Machine learning(ML),a major branch of artificial intelligence,has not only demonstrated the potential to significantly improve numerous sectors of healthcare but has also made significant contributions to the field of solid organ transplantation.ML provides revolutionary opportunities in areas such as donorrecipient matching,post-transplant monitoring,and patient care by automatically analyzing large amounts of data,identifying patterns,and forecasting outcomes.AIM To conduct a comprehensive bibliometric analysis of publications on the use of ML in transplantation to understand current research trends and their implications.METHODS On July 18,a thorough search strategy was used with the Web of Science database.ML and transplantation-related keywords were utilized.With the aid of the VOS viewer application,the identified articles were subjected to bibliometric variable analysis in order to determine publication counts,citation counts,contributing countries,and institutions,among other factors.RESULTS Of the 529 articles that were first identified,427 were deemed relevant for bibliometric analysis.A surge in publications was observed over the last four years,especially after 2018,signifying growing interest in this area.With 209 publications,the United States emerged as the top contributor.Notably,the"Journal of Heart and Lung Transplantation"and the"American Journal of Transplantation"emerged as the leading journals,publishing the highest number of relevant articles.Frequent keyword searches revealed that patient survival,mortality,outcomes,allocation,and risk assessment were significant themes of focus.CONCLUSION The growing body of pertinent publications highlights ML's growing presence in the field of solid organ transplantation.This bibliometric analysis highlights the growing importance of ML in transplant research and highlights its exciting potential to change medical practices and enhance patient outcomes.Encouraging collaboration between significant contributors can potentially fast-track advancements in this interdisciplinary domain. 展开更多
关键词 Machine learning Artificial intelligence Solid organ transplantation Bibliometric analysis
下载PDF
Artificial intelligence applications in ophthalmic optical coherence tomography:a 12-year bibliometric analysis
7
作者 Ruo-Yu Wang Si-Yuan Zhu +3 位作者 Xin-Ya Hu Li Sun Shao-Chong Zhang Wei-Hua Yang 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第12期2295-2307,共13页
AIM:To explore the current application and research frontiers of global ophthalmic optical coherence tomography(OCT)imaging artificial intelligence(AI)research.METHODS:The citation data were downloaded from the Web of... AIM:To explore the current application and research frontiers of global ophthalmic optical coherence tomography(OCT)imaging artificial intelligence(AI)research.METHODS:The citation data were downloaded from the Web of Science Core Collection database(WoSCC)to evaluate the articles in application of AI in ophthalmic OCT published from January 1,2012 to December 31,2023.This information was analyzed using CiteSpace 6.2.R2 Advanced software,and high-impact articles were analyzed.RESULTS:In general,877 articles from 65 countries were studied and analyzed,of which 261 were published by the United States and 252 by China.The centrality of the United States is 0.33,the H index is 38,and the H index of two institutions in England reaches 20.Ophthalmology,computer science,and AI are the main disciplines involved. 展开更多
关键词 artificial intelligence optical coherence tomography bibliometric analysis deep learning
下载PDF
Design of a Student Recommendation Platform Based on Learning Behavior and Habit Training
8
作者 Xiaoyun Zhu 《Journal of Electronic Research and Application》 2024年第6期112-117,共6页
This study innovatively built an intelligent analysis platform for learning behavior,which deeply integrated the cutting-edge technology of big data and Artificial Intelligence(AI),\mined and analyzed students’learni... This study innovatively built an intelligent analysis platform for learning behavior,which deeply integrated the cutting-edge technology of big data and Artificial Intelligence(AI),\mined and analyzed students’learning data,and realized the personalized customization of learning resources and the accurate matching of intelligent learning partners.With the help of advanced algorithms and multi-dimensional data fusion strategies,the platform not only promotes positive interaction and collaboration in the learning environment but also provides teachers with comprehensive and in-depth students’learning portraits,which provides solid support for the implementation of precision education and the personalized adjustment of teaching strategies.In this study,a recommender system based on user similarity evaluation and a collaborative filtering mechanism is carefully designed,and its technical architecture and implementation process are described in detail. 展开更多
关键词 Big data analysis Collaborative filtering learning behavior analysis Personalized recommendation intelligent matching
下载PDF
Development and Analysis of a Machine Learning Based Software for Assisting Online Classes during COVID-19 被引量:1
9
作者 Tasfiqul Ghani Nusrat Jahan +2 位作者 Mohammad Monirujjaman Khan S. M. Tahsinur Rahman Sabik Tawsif Anjum Islam 《Journal of Software Engineering and Applications》 2021年第3期83-94,共12页
<p align="justify"> <span style="font-family:Verdana;">Amid the Covid-19 widespread, it has been challenging for educational institutions to conduct online classes, facing multiples cha... <p align="justify"> <span style="font-family:Verdana;">Amid the Covid-19 widespread, it has been challenging for educational institutions to conduct online classes, facing multiples challenges. This paper provides an insight into different approaches in facing those challenges which includes conducting a fair online class for students. It is tough for an instructor to keep track of their students at the same time because it is difficult to screen if any of the understudies within the class are not present, mindful, or drowsing. This paper discusses a possible solution, something new that can offer support to instructors seeing things from a more significant point of view. The solution is a facial analysis computer program that can let instructors know which students are attentive and who is not. There’s a green and red square box for face detection, for which Instructors can watch by seeing a green box on those mindful students conjointly, a red box on those who are not mindful at all. This paper finds that the program can automatically give attendance by analyzing data from face detection. It has other features for which the teacher can also know if any student leaves the class early. In this paper, model design, performance analysis, and online class assistant aspects of the program have been discussed.</span> </p> 展开更多
关键词 Online Class PYTHON Technology Artificial intelligence analysis Machine learning Covid-19 SOFTWARE Face Detection Drowsiness Detector
下载PDF
Learning Outcomes Using Cooperative Learning in Communication Classes: Evaluation Using Text Analysis
10
作者 Mayumi Uno Yukari Katayama 《Open Journal of Nursing》 2017年第9期1058-1068,共11页
Objectives: The study examined nursing students’ acquisition of good communication skills via text analysis of learning outcomes using cooperative learning. Methods: The study involved 90 first-year students enrolled... Objectives: The study examined nursing students’ acquisition of good communication skills via text analysis of learning outcomes using cooperative learning. Methods: The study involved 90 first-year students enrolled in the nursing department of a Japanese university. Participants were asked to learn three learning tasks considered to heighten communicative ability through firsthand experience using the discussion-based technique of cooperative learning: 1) to engage in self-reflection, 2) to imagine something beyond your own experience, and 3) to accept something that does not fit within the scope of your own experience or thought. A questionnaire survey consisted of five items, including learning challenges 1) to 3) as well as 4) “Satisfaction with the exercises” and 5) “Students’ hopes.” These items were evaluated using text analysis. Results: A total of 79 survey questionnaires were collected (87.8% recovery rate) for analysis. “Self-reflection and self-realizations prompted by the communication exercise” was observed as a characteristic of Task 1, “becoming aware of ideas and opinions different than one’s own by listening to the opinions of others” as a characteristic of Task 2, “deepening relationships by learning about diverse ideas and values through interactions with others” as a characteristic of Task 3, and “the effects of communicating with student subjects” as a characteristic of Task 4. The responses to Task 5 were diverse;no common characteristics were found. The intervention was found to be useful for student engagement and the communication required of nurses. Conclusions: Using cooperative learning discussion in communication class was found to be effective. As nursing is an inherently interpersonal occupation, such effects include important elements. 展开更多
关键词 Active learning Think-Pair-Share ROUND Robin Communication student ENGAGEMENT TEXT analysis
下载PDF
Evolutionary Algorithm Based Feature Subset Selection for Students Academic Performance Analysis
11
作者 Ierin Babu R.MathuSoothana S.Kumar 《Intelligent Automation & Soft Computing》 SCIE 2023年第6期3621-3636,共16页
Educational Data Mining(EDM)is an emergent discipline that concen-trates on the design of self-learning and adaptive approaches.Higher education institutions have started to utilize analytical tools to improve student... Educational Data Mining(EDM)is an emergent discipline that concen-trates on the design of self-learning and adaptive approaches.Higher education institutions have started to utilize analytical tools to improve students’grades and retention.Prediction of students’performance is a difficult process owing to the massive quantity of educational data.Therefore,Artificial Intelligence(AI)techniques can be used for educational data mining in a big data environ-ment.At the same time,in EDM,the feature selection process becomes necessary in creation of feature subsets.Since the feature selection performance affects the predictive performance of any model,it is important to elaborately investigate the outcome of students’performance model related to the feature selection techni-ques.With this motivation,this paper presents a new Metaheuristic Optimiza-tion-based Feature Subset Selection with an Optimal Deep Learning model(MOFSS-ODL)for predicting students’performance.In addition,the proposed model uses an isolation forest-based outlier detection approach to eliminate the existence of outliers.Besides,the Chaotic Monarch Butterfly Optimization Algo-rithm(CBOA)is used for the selection of highly related features with low com-plexity and high performance.Then,a sailfish optimizer with stacked sparse autoencoder(SFO-SSAE)approach is utilized for the classification of educational data.The MOFSS-ODL model is tested against a benchmark student’s perfor-mance data set from the UCI repository.A wide-ranging simulation analysis por-trayed the improved predictive performance of the MOFSS-ODL technique over recent approaches in terms of different measures.Compared to other methods,experimental results prove that the proposed(MOFSS-ODL)classification model does a great job of predicting students’academic progress,with an accuracy of 96.49%. 展开更多
关键词 students’performance analysis educational data mining feature selection deep learning metaheuristics outlier detection
下载PDF
A Survey on Methods and Applications of Intelligent Market Basket Analysis Based on Association Rule
12
作者 Monerah M.Alawadh Ahmed M.Barnawi 《Journal on Big Data》 2022年第1期1-25,共25页
The market trends rapidly changed over the last two decades.The primary reason is the newly created opportunities and the increased number of competitors competing to grasp market share using business analysis techniq... The market trends rapidly changed over the last two decades.The primary reason is the newly created opportunities and the increased number of competitors competing to grasp market share using business analysis techniques.Market Basket Analysis has a tangible effect in facilitating current change in the market.Market Basket Analysis is one of the famous fields that deal with Big Data and Data Mining applications.MBA initially uses Association Rule Learning(ARL)as a mean for realization.ARL has a beneficial effect in providing a plenty benefit in analyzing the market data and understanding customers’behavior.An important motive of using such techniques is maximizing the business profit as well as matching the exact customer needs as closely as possible.In this survey paper,we discussed several applications and methods of MBA based on ARL.Also,we reviewed some association rule learning measurements including trust,lift,leverage,and others.Furthermore,we discuss some open issues and future topics in the area of market basket analysis and association rule learning. 展开更多
关键词 intelligent market basket analysis association rule learning market basket analysis apriori algorithm association rule measurements
下载PDF
An Analysis of Lexical Errors in Chinese Senior One Students' English Writing
13
作者 倪蝶蝶 《海外英语》 2016年第20期193-194,共2页
Lexical errors made by language learners frequently in the language learning process play a significant role in language teaching and learning. This paper, based on the theory of error analysis, mainly analyzes lexica... Lexical errors made by language learners frequently in the language learning process play a significant role in language teaching and learning. This paper, based on the theory of error analysis, mainly analyzes lexical errors made by Chinese senior one students in their writing and aims to find out the main types of lexical errors and the most frequent lexical errors in their writing. The results are of great significance and importance for language teaching and learning. 展开更多
关键词 lexical errors error analysis Chinese senior one students writing language teaching language learning
下载PDF
PCA-LSTM:An Impulsive Ground-Shaking Identification Method Based on Combined Deep Learning
14
作者 Yizhao Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第6期3029-3045,共17页
Near-fault impulsive ground-shaking is highly destructive to engineering structures,so its accurate identification ground-shaking is a top priority in the engineering field.However,due to the lack of a comprehensive c... Near-fault impulsive ground-shaking is highly destructive to engineering structures,so its accurate identification ground-shaking is a top priority in the engineering field.However,due to the lack of a comprehensive consideration of the ground-shaking characteristics in traditional methods,the generalization and accuracy of the identification process are low.To address these problems,an impulsive ground-shaking identification method combined with deep learning named PCA-LSTM is proposed.Firstly,ground-shaking characteristics were analyzed and groundshaking the data was annotated using Baker’smethod.Secondly,the Principal Component Analysis(PCA)method was used to extract the most relevant features related to impulsive ground-shaking.Thirdly,a Long Short-Term Memory network(LSTM)was constructed,and the extracted features were used as the input for training.Finally,the identification results for the Artificial Neural Network(ANN),Convolutional Neural Network(CNN),LSTM,and PCA-LSTMmodels were compared and analyzed.The experimental results showed that the proposed method improved the accuracy of pulsed ground-shaking identification by>8.358%and identification speed by>26.168%,compared to other benchmark models ground-shaking. 展开更多
关键词 Impulsive ground-shaking principal component analysis artificial intelligence deep learning impulse recognition
下载PDF
Adaptive Music Recommendation: Applying Machine Learning Algorithms Using Low Computing Device
15
作者 Tianhui Zhang Xianchen Liu +1 位作者 Zhen Guo Yuanhao Tian 《Journal of Software Engineering and Applications》 2024年第11期817-831,共15页
In the digital music landscape, the accuracy and response speed of music recommendation systems (MRS) are crucial for user experience optimization. Traditional MRS often relies on the use of high-performance servers f... In the digital music landscape, the accuracy and response speed of music recommendation systems (MRS) are crucial for user experience optimization. Traditional MRS often relies on the use of high-performance servers for large-scale training to produce recommendation results, which may result in the inability to achieve music recommendation in some areas due to substandard hardware conditions. This study evaluates the adaptability of four popular machine learning algorithms (K-means clustering, fuzzy C-means (FCM) clustering, hierarchical clustering, and self-organizing map (SOM)) on low-computing servers. Our comparative analysis highlights that while K-means and FCM are robust in high-performance settings, they underperform in low-power scenarios where SOM excels, delivering fast and reliable recommendations with minimal computational overhead. This research addresses a gap in the literature by providing a detailed comparative analysis of MRS algorithms, offering practical insights for implementing adaptive MRS in technologically diverse environments. We conclude with strategic recommendations for emerging streaming services in resource-constrained settings, emphasizing the need for scalable solutions that balance cost and performance. This study advocates an adaptive selection of recommendation algorithms to manage operational costs effectively and accommodate growth. 展开更多
关键词 Music Recommendation Media Arts and Sciences Artificial intelligence Machine learning ALGORITHMS Comparative analysis
下载PDF
Artificial Intelligence Based Sentiment Analysis for Health Crisis Management in Smart Cities 被引量:1
16
作者 Anwer Mustafa Hilal Badria Sulaiman Alfurhood +3 位作者 Fahd N.Al-Wesabi Manar Ahmed Hamza Mesfer Al Duhayyim Huda G.Iskandar 《Computers, Materials & Continua》 SCIE EI 2022年第4期143-157,共15页
Smart city promotes the unification of conventional urban infrastructure and information technology (IT) to improve the quality of living andsustainable urban services in the city. To accomplish this, smart cities nec... Smart city promotes the unification of conventional urban infrastructure and information technology (IT) to improve the quality of living andsustainable urban services in the city. To accomplish this, smart cities necessitate collaboration among the public as well as private sectors to install ITplatforms to collect and examine massive quantities of data. At the same time,it is essential to design effective artificial intelligence (AI) based tools to handlehealthcare crisis situations in smart cities. To offer proficient services to peopleduring healthcare crisis time, the authorities need to look closer towardsthem. Sentiment analysis (SA) in social networking can provide valuableinformation regarding public opinion towards government actions. With thismotivation, this paper presents a new AI based SA tool for healthcare crisismanagement (AISA-HCM) in smart cities. The AISA-HCM technique aimsto determine the emotions of the people during the healthcare crisis time, suchas COVID-19. The proposed AISA-HCM technique involves distinct operations such as pre-processing, feature extraction, and classification. Besides,brain storm optimization (BSO) with deep belief network (DBN), called BSODBN model is employed for feature extraction. Moreover, beetle antennasearch with extreme learning machine (BAS-ELM) method was utilized forclassifying the sentiments as to various classes. The use of BSO and BASalgorithms helps to effectively modify the parameters involved in the DBNand ELM models respectively. The performance validation of the AISA-HCMtechnique takes place using Twitter data and the outcomes are examinedwith respect to various measures. The experimental outcomes highlighted theenhanced performance of the AISA-HCM technique over the recent state ofart SA approaches with the maximum precision of 0.89, recall of 0.88, Fmeasure of 0.89, and accuracy of 0.94. 展开更多
关键词 Smart city sentiment analysis artificial intelligence healthcare management metaheuristics deep learning parameter tuning
下载PDF
Web Intelligence with Enhanced Sunflower Optimization Algorithm for Sentiment Analysis 被引量:1
17
作者 Abeer D.Algarni 《Computer Systems Science & Engineering》 SCIE EI 2023年第10期1233-1247,共15页
Exponential increase in the quantity of user generated content in websites and social networks have resulted in the emergence of web intelligence approaches.Several natural language processing(NLP)tools are commonly u... Exponential increase in the quantity of user generated content in websites and social networks have resulted in the emergence of web intelligence approaches.Several natural language processing(NLP)tools are commonly used to examine the large quantity of data generated online.Particularly,sentiment analysis(SA)is an effective way of classifying the data into different classes of user opinions or sentiments.The latest advances in machine learning(ML)and deep learning(DL)approaches offer an intelligent way of analyzing sentiments.In this view,this study introduces a web intelligence with enhanced sunflower optimization based deep learning model for sentiment analysis(WIESFO-DLSA)technique.The major intention of the WIESFO-DLSA technique is to identify the expressions or sentiments that exist in the social networking data.The WIESFO-DLSA technique initially performs pre-processing and word2vec feature extraction processes to generate a meaningful set of features.At the same time,bidirectional long short term memory(BiLSTM)model is applied for classification of sentiments into different class labels.Moreover,an enhanced sunflower optimization(ESFO)algorithm is exploited to optimally adjust the hyperparameters of the BiLSTM model.A wide range of simulation analyses is performed to report the better outcomes of the WISFO-DLSA technique and the experimental outcomes ensured its promising performance under several measures. 展开更多
关键词 Sentiment analysis web intelligence deep learning social networking natural language processing
下载PDF
Coupling Discriminating Statistical Analysis and Artificial Intelligence for Geotechnical Characterization of the Kampemba’s Municipality Soils (Lubumbashi, DR Congo) 被引量:2
18
作者 Kavula Ngoy Elysée Kasongo wa Mutombo Portance +3 位作者 Libasse Sow Ngoy Biyukaleza Bilez Kavula Mwenze Corneille Tshibwabwa Kasongo Obed 《Geomaterials》 2020年第3期35-55,共21页
This study focuses on the determination of physical and mechanical characteristics based on in vitro tests, by using field samples for the Kampemba urban area in the city of Lubumbashi. At the end of this study, we id... This study focuses on the determination of physical and mechanical characteristics based on in vitro tests, by using field samples for the Kampemba urban area in the city of Lubumbashi. At the end of this study, we identified the soils according to their parameters, and established the geotechnical classification by determining their bearing capacity by the group index method using from the identification tests carried out. By using the AASHTO classification method (American Association for State Highway Transportation Official), the results obtained after our studies revealed five classes of soil: A-2, A-4, A-5, A-6, A-7 in a general way, and particularly eight subgroups of soil: A-2-4, A-2-6, A-2-7, A-4, A-5, A-6, A-7-5 and A-7-6 for the concerned area. The latter has given statistical analysis and deep learning based on multi-layer perceptron, the global values of the physical parameters. It’s about: 31.77% ± 1.05% for the limit of liquidity;18.71% ± 0.76% for the plastic limit;13.06% ± 0.79% for the plasticity index;83.00% ± 3.33% for passing of 2 mm sieve;76.22% ± 3.2% for passing of 400 μm sieve;89.07% ± 2.99% for passing of 4.75 mm sieve;70.62% ± 2.39% passing of 80 μm sieve;1.66 ± 0.61 for the consistency index;<span style="white-space:nowrap;">&#8722;</span>0.67 ± 0.62 for the liquidity index and 8 ± 1 for the group index. 展开更多
关键词 Geotechnical Classification Discriminant Factorial analysis Artificial intelligence Deep learning Multi-Layer Perceptron
下载PDF
Cyber Resilience through Real-Time Threat Analysis in Information Security
19
作者 Aparna Gadhi Ragha Madhavi Gondu +1 位作者 Hitendra Chaudhary Olatunde Abiona 《International Journal of Communications, Network and System Sciences》 2024年第4期51-67,共17页
This paper examines how cybersecurity is developing and how it relates to more conventional information security. Although information security and cyber security are sometimes used synonymously, this study contends t... This paper examines how cybersecurity is developing and how it relates to more conventional information security. Although information security and cyber security are sometimes used synonymously, this study contends that they are not the same. The concept of cyber security is explored, which goes beyond protecting information resources to include a wider variety of assets, including people [1]. Protecting information assets is the main goal of traditional information security, with consideration to the human element and how people fit into the security process. On the other hand, cyber security adds a new level of complexity, as people might unintentionally contribute to or become targets of cyberattacks. This aspect presents moral questions since it is becoming more widely accepted that society has a duty to protect weaker members of society, including children [1]. The study emphasizes how important cyber security is on a larger scale, with many countries creating plans and laws to counteract cyberattacks. Nevertheless, a lot of these sources frequently neglect to define the differences or the relationship between information security and cyber security [1]. The paper focus on differentiating between cybersecurity and information security on a larger scale. The study also highlights other areas of cybersecurity which includes defending people, social norms, and vital infrastructure from threats that arise from online in addition to information and technology protection. It contends that ethical issues and the human factor are becoming more and more important in protecting assets in the digital age, and that cyber security is a paradigm shift in this regard [1]. 展开更多
关键词 Cybersecurity Information Security Network Security Cyber Resilience Real-Time Threat analysis Cyber Threats Cyberattacks Threat intelligence Machine learning Artificial intelligence Threat Detection Threat Mitigation Risk Assessment Vulnerability Management Incident Response Security Orchestration Automation Threat Landscape Cyber-Physical Systems Critical Infrastructure Data Protection Privacy Compliance Regulations Policy Ethics CYBERCRIME Threat Actors Threat Modeling Security Architecture
下载PDF
Design and Implementation of the Employment Management Decision Support System based on Machine Learning
20
作者 Zhigang Ma 《Journal of Electronic Research and Application》 2024年第5期134-140,共7页
To address the challenges of current college student employment management,this study designed and implemented a machine learning-based decision support system for college student employment management.The system coll... To address the challenges of current college student employment management,this study designed and implemented a machine learning-based decision support system for college student employment management.The system collects and analyzes multidimensional data,uses machine learning algorithms for prediction and matching,provides personalized employment guidance for students,and provides decision support for universities and enterprises.The research results indicate that the system can effectively improve the efficiency and accuracy of employment guidance,promote school-enterprise cooperation,and achieve a win-win situation for all parties. 展开更多
关键词 Machine learning Employment of college students Decision support system Data analysis
下载PDF
上一页 1 2 53 下一页 到第
使用帮助 返回顶部