Nowadays, asphalt road has dominated highways around the world. Among various defects of asphalt road, crackshave been paid more attention, since cracks often cause major engineering and personnel safety incidents. Cu...Nowadays, asphalt road has dominated highways around the world. Among various defects of asphalt road, crackshave been paid more attention, since cracks often cause major engineering and personnel safety incidents. Currentmanual crack inspection methods are time-consuming and labor-intensive, and most segmentation methods cannot detect cracks at the pixel level. This paper proposes an intelligent segmentation and measurement model basedon the modified Mask R-CNN algorithm to automatically and accurately detect asphalt road cracks. The modelproposed in this paper mainly includes a convolutional neural network (CNN), an optimized region proposalnetwork (RPN), a region of interest (RoI) Align layer, a candidate area classification network and a Mask branch offully convolutional network (FCN). The ratio and size of anchors in the RPN are adjusted to improve the accuracyand efficiency of segmentation. Soft non-maximum suppression (Soft-NMS) algorithm is developed to improvethe segmentation accuracy. A dataset including 8,689 images (512× 512 pixels) of asphalt cracks is established andthe road crack is manually marked. Transfer learning is used to initialize the model parameters in the trainingprocess. To optimize the model training parameters, multiple comparison experiments are performed, and the testresults show that the mean average precision (mAP) value and F1-score of the optimal trained model are 0.952 and0.949. Subsequently, the robustness verification test and comparative test of the trained model are conducted andthe topological features of the crack are extracted. Then, the damage area, length and average width of the crackare measured automatically and accurately at pixel level. More importantly, this paper develops an automatic crackdetection platform for asphalt roads to automatically extract the number, area, length and average width of cracks,which can significantly improve the crack detection efficiency for the road maintenance industry.展开更多
Due to excessive car usage,pollution and traffic have increased.In urban cities in Saudi Arabia,such as Riyadh and Jeddah,drivers and air quality suffer from traffic congestion.Although the government has implemented ...Due to excessive car usage,pollution and traffic have increased.In urban cities in Saudi Arabia,such as Riyadh and Jeddah,drivers and air quality suffer from traffic congestion.Although the government has implemented numerous solutions to resolve this issue or reduce its effect on the environment and residents,it still exists and is getting worse.This paper proposes an intelligent,adaptive,practical,and feasible deep learning method for intelligent traffic control.It uses an Internet of Things(IoT)sensor,a camera,and a Convolutional Neural Network(CNN)tool to control traffic in real time.An image segmentation algorithm analyzes inputs from the cameras installed in designated areas.This study considered whether CNNs and IoT technologies could ensure smooth traffic flow in high-speed,high-congestion situations.The presented algorithm calculates traffic density and cars’speeds to determine which lane gets high priority first.A real case study has been conducted on MATLAB to verify and validate the results of this approach.This algorithm estimates the reduced average waiting time during the red light and the suggested time for the green and red lights.An assessment between some literature works and the presented algorithm is also provided.In contrast to traditional traffic management methods,this intelligent and adaptive algorithm reduces traffic congestion,automobile waiting times,and accidents.展开更多
Road transportation plays a crucial role in society and daily life,as the functioning and durability of roads can significantly impact a nation's economic development.In the whole life cycle of the road,the emerge...Road transportation plays a crucial role in society and daily life,as the functioning and durability of roads can significantly impact a nation's economic development.In the whole life cycle of the road,the emergence of disease is unavoidable,so it is necessary to adopt relevant technical means to deal with the disease.This study comprehensively reviews the advancements in computer vision,artificial intelligence,and mobile robotics in the road domain and examines their progress and applications in road detection,diagnosis,and treatment,especially asphalt roads.Specifically,it analyzes the research progress in detecting and diagnosing surface and internal road distress and related techniques and algorithms are compared.In addition,also introduces various road gover-nance technologies,including automated repairs,intelligent construction,and path planning for crack sealing.Despite their proven effectiveness in detecting road distress,analyzing diagnoses,and planning maintenance,these technologies still confront challenges in data collection,parameter optimization,model portability,system accuracy,robustness,and real-time performance.Consequently,the integration of multidisciplinary technologies is imperative to enable the development of an integrated approach that includes road detection,diagnosis,and treatment.This paper addresses the challenges of precise defect detection,condition assessment,and unmanned construction.At the same time,the efficiency of labor liberation and road maintenance is achieved,and the automation level of the road engineering industry is improved.展开更多
Accurate short-term traffic flow prediction plays a crucial role in intelligent transportation system (ITS), because it can assist both traffic authorities and individual travelers make better decisions. Previous rese...Accurate short-term traffic flow prediction plays a crucial role in intelligent transportation system (ITS), because it can assist both traffic authorities and individual travelers make better decisions. Previous researches mostly focus on shallow traffic prediction models, which performances were unsatisfying since short-term traffic flow exhibits the characteristics of high nonlinearity, complexity and chaos. Taking the spatial and temporal correlations into consideration, a new traffic flow prediction method is proposed with the basis on the road network topology and gated recurrent unit (GRU). This method can help researchers without professional traffic knowledge extracting generic traffic flow features effectively and efficiently. Experiments are conducted by using real traffic flow data collected from the Caltrans Performance Measurement System (PEMS) database in San Diego and Oakland from June 15, 2017 to September 27, 2017. The results demonstrate that our method outperforms other traditional approaches in terms of mean absolute percentage error (MAPE), symmetric mean absolute percentage error (SMAPE) and root mean square error (RMSE).展开更多
Many surveys on vehicle traffic safety have shown that the tire road friction coefficient(TRFC)is correlated with the probability of an accident.The probability of road accidents increases sharply on slippery road sur...Many surveys on vehicle traffic safety have shown that the tire road friction coefficient(TRFC)is correlated with the probability of an accident.The probability of road accidents increases sharply on slippery road surfaces.Therefore,accurate knowledge of TRFC contributes to the optimization of driver maneuvers for further improving the safety of intelligent vehicles.A large number of researchers have employed different tools and proposed different algorithms to obtain TRFC.This work investigates these different methods that have been widely utilized to estimate TRFC.These methods are divided into three main categories:off-board sensors-based,vehicle dynamics-based,and data-driven-based methods.This review provides a comparative analysis of these methods and describes their strengths and weaknesses.Moreover,some future research directions regarding TRFC estimation are presented.展开更多
Road condition is an important variable to measure in order to decrease road and vehicle operating/maintenance costs, but also to increase ride comfort and traffic safety. By using the built-in vibration sensor in sma...Road condition is an important variable to measure in order to decrease road and vehicle operating/maintenance costs, but also to increase ride comfort and traffic safety. By using the built-in vibration sensor in smart phones, it is possible to collect road roughness data which can be an indicator of road condition up to a level of Class 2 or 3 in a simple and cost efficient way. Since data collection therefore is possible to be done more frequently, one can better monitor roughness changes over time. The continuous data collection can also give early warnings of changes and damage, enable new ways to work in the operational road maintenance management, and can serve as a guide for more accurate surveys for strategic asset management and pavement planning. Collected measurement data are wirelessly transferred by the operator when needed via a web service to an internet mapping server with spatial filtering functions. The measured data can be aggregated in preferred sections, as well as exported to other GlS (geographical information systems) or road management systems. Our conclusion is that measuring roads with smart phones can provide an efficient, scalable, and cost-effective way for road organizations to deliver road condition data.展开更多
This research presented a bi-level programming approach to optimize the schedule of ur- ban road construction activities based on a hypothetical transport network, with an objective of mini- mizing the overall traffic...This research presented a bi-level programming approach to optimize the schedule of ur- ban road construction activities based on a hypothetical transport network, with an objective of mini- mizing the overall traffic delays. A heuristic algorithm was utilized to identify a set of road construction schedules, while PARAMICS was adopted to estimate the total travel time in the network under each road construction scenario. To test the performance of proposed heuristics-simulation methodology, a numerical test was implemented. The overall results suggested that the proposed methodol- ogy could quickly find the optimum solution with good convergence.展开更多
A method for road boundary detection and tracking using laser ladar with respect to a vehicle' s local coordinates is proposed. It can be applied to different types of road conditions, such as roads with or without c...A method for road boundary detection and tracking using laser ladar with respect to a vehicle' s local coordinates is proposed. It can be applied to different types of road conditions, such as roads with or without curbs, having relatively rough road surface and with obstacles on road surface. In the method, some line segments are extracted after a series of preprocessing on range data. The extracted line segments are combined and further selected. They are then united to match the road models and generate the road boundary points which are tracked by Kalman filter. Then the obtained road boundary points are transformed to build a precise vector map by least squares fitting algorithm. These fitted line segments represent road boundary vectors. The vector map is precise enough to provide ample road information such as the orientation of road, the road width and the passable road region. Finally, extensive experiments conducted in urban and semi-urban environment demonstrate the robustness, effectiveness and viability of the proposed method.展开更多
基金This research was funded by the National Key Research and Development Program of China(No.2017YFC1501204)the National Natural Science Foundation of China(No.51678536)+4 种基金the Guangdong Innovative and Entrepreneurial Research Team Program(2016ZT06N340)the Program for Science and Technology Innovation Talents in Universities of Henan Province(Grant No.19HASTIT043)the Outstanding Young Talent Research Fund of Zhengzhou University(1621323001)the Program for Innovative Research Team(in Science and Technology)in University of Henan Province(18IRTSTHN007)the Research on NonDestructive Testing(NDT)and Rapid Evaluation Technology for Grouting Quality of Prestressed Ducts(Contract No.HG-GCKY-01-002).The authors would like to thank for these financial supports.
文摘Nowadays, asphalt road has dominated highways around the world. Among various defects of asphalt road, crackshave been paid more attention, since cracks often cause major engineering and personnel safety incidents. Currentmanual crack inspection methods are time-consuming and labor-intensive, and most segmentation methods cannot detect cracks at the pixel level. This paper proposes an intelligent segmentation and measurement model basedon the modified Mask R-CNN algorithm to automatically and accurately detect asphalt road cracks. The modelproposed in this paper mainly includes a convolutional neural network (CNN), an optimized region proposalnetwork (RPN), a region of interest (RoI) Align layer, a candidate area classification network and a Mask branch offully convolutional network (FCN). The ratio and size of anchors in the RPN are adjusted to improve the accuracyand efficiency of segmentation. Soft non-maximum suppression (Soft-NMS) algorithm is developed to improvethe segmentation accuracy. A dataset including 8,689 images (512× 512 pixels) of asphalt cracks is established andthe road crack is manually marked. Transfer learning is used to initialize the model parameters in the trainingprocess. To optimize the model training parameters, multiple comparison experiments are performed, and the testresults show that the mean average precision (mAP) value and F1-score of the optimal trained model are 0.952 and0.949. Subsequently, the robustness verification test and comparative test of the trained model are conducted andthe topological features of the crack are extracted. Then, the damage area, length and average width of the crackare measured automatically and accurately at pixel level. More importantly, this paper develops an automatic crackdetection platform for asphalt roads to automatically extract the number, area, length and average width of cracks,which can significantly improve the crack detection efficiency for the road maintenance industry.
基金This research work was funded by Institutional Fund Projects under Grant No.(IFPIP:707-829-1443)The authors gratefully acknowledge technical and financial support provided by theMinistry of Education and King Abdulaziz University,DSR,Jeddah,Saudi Arabia.
文摘Due to excessive car usage,pollution and traffic have increased.In urban cities in Saudi Arabia,such as Riyadh and Jeddah,drivers and air quality suffer from traffic congestion.Although the government has implemented numerous solutions to resolve this issue or reduce its effect on the environment and residents,it still exists and is getting worse.This paper proposes an intelligent,adaptive,practical,and feasible deep learning method for intelligent traffic control.It uses an Internet of Things(IoT)sensor,a camera,and a Convolutional Neural Network(CNN)tool to control traffic in real time.An image segmentation algorithm analyzes inputs from the cameras installed in designated areas.This study considered whether CNNs and IoT technologies could ensure smooth traffic flow in high-speed,high-congestion situations.The presented algorithm calculates traffic density and cars’speeds to determine which lane gets high priority first.A real case study has been conducted on MATLAB to verify and validate the results of this approach.This algorithm estimates the reduced average waiting time during the red light and the suggested time for the green and red lights.An assessment between some literature works and the presented algorithm is also provided.In contrast to traditional traffic management methods,this intelligent and adaptive algorithm reduces traffic congestion,automobile waiting times,and accidents.
基金supported by the National Key Research and Development Program of China (No.2021YFB2601000)National Natural Science Foundation of China (Nos.52078049,52378431)+2 种基金Fundamental Research Funds for the Central Universities,CHD (Nos.300102210302,300102210118)the 111 Proj-ect of Sustainable Transportation for Urban Agglomeration in Western China (No.B20035)Natural Science Foundation of Shaanxi Province of China (No.S2022-JM-193).
文摘Road transportation plays a crucial role in society and daily life,as the functioning and durability of roads can significantly impact a nation's economic development.In the whole life cycle of the road,the emergence of disease is unavoidable,so it is necessary to adopt relevant technical means to deal with the disease.This study comprehensively reviews the advancements in computer vision,artificial intelligence,and mobile robotics in the road domain and examines their progress and applications in road detection,diagnosis,and treatment,especially asphalt roads.Specifically,it analyzes the research progress in detecting and diagnosing surface and internal road distress and related techniques and algorithms are compared.In addition,also introduces various road gover-nance technologies,including automated repairs,intelligent construction,and path planning for crack sealing.Despite their proven effectiveness in detecting road distress,analyzing diagnoses,and planning maintenance,these technologies still confront challenges in data collection,parameter optimization,model portability,system accuracy,robustness,and real-time performance.Consequently,the integration of multidisciplinary technologies is imperative to enable the development of an integrated approach that includes road detection,diagnosis,and treatment.This paper addresses the challenges of precise defect detection,condition assessment,and unmanned construction.At the same time,the efficiency of labor liberation and road maintenance is achieved,and the automation level of the road engineering industry is improved.
基金Supported by the Support Program of the National 12th Five Year-Plan of China(2015BAK25B03)
文摘Accurate short-term traffic flow prediction plays a crucial role in intelligent transportation system (ITS), because it can assist both traffic authorities and individual travelers make better decisions. Previous researches mostly focus on shallow traffic prediction models, which performances were unsatisfying since short-term traffic flow exhibits the characteristics of high nonlinearity, complexity and chaos. Taking the spatial and temporal correlations into consideration, a new traffic flow prediction method is proposed with the basis on the road network topology and gated recurrent unit (GRU). This method can help researchers without professional traffic knowledge extracting generic traffic flow features effectively and efficiently. Experiments are conducted by using real traffic flow data collected from the Caltrans Performance Measurement System (PEMS) database in San Diego and Oakland from June 15, 2017 to September 27, 2017. The results demonstrate that our method outperforms other traditional approaches in terms of mean absolute percentage error (MAPE), symmetric mean absolute percentage error (SMAPE) and root mean square error (RMSE).
基金Supported by the National Natural Science Funds for Distinguished Young Scholar of China(Grant No.52025121)National Natural Science Foundation of China(Grant Nos.51975118,52002066).
文摘Many surveys on vehicle traffic safety have shown that the tire road friction coefficient(TRFC)is correlated with the probability of an accident.The probability of road accidents increases sharply on slippery road surfaces.Therefore,accurate knowledge of TRFC contributes to the optimization of driver maneuvers for further improving the safety of intelligent vehicles.A large number of researchers have employed different tools and proposed different algorithms to obtain TRFC.This work investigates these different methods that have been widely utilized to estimate TRFC.These methods are divided into three main categories:off-board sensors-based,vehicle dynamics-based,and data-driven-based methods.This review provides a comparative analysis of these methods and describes their strengths and weaknesses.Moreover,some future research directions regarding TRFC estimation are presented.
文摘Road condition is an important variable to measure in order to decrease road and vehicle operating/maintenance costs, but also to increase ride comfort and traffic safety. By using the built-in vibration sensor in smart phones, it is possible to collect road roughness data which can be an indicator of road condition up to a level of Class 2 or 3 in a simple and cost efficient way. Since data collection therefore is possible to be done more frequently, one can better monitor roughness changes over time. The continuous data collection can also give early warnings of changes and damage, enable new ways to work in the operational road maintenance management, and can serve as a guide for more accurate surveys for strategic asset management and pavement planning. Collected measurement data are wirelessly transferred by the operator when needed via a web service to an internet mapping server with spatial filtering functions. The measured data can be aggregated in preferred sections, as well as exported to other GlS (geographical information systems) or road management systems. Our conclusion is that measuring roads with smart phones can provide an efficient, scalable, and cost-effective way for road organizations to deliver road condition data.
基金Supported by the National Natural Science Foundation of China(71131001)
文摘This research presented a bi-level programming approach to optimize the schedule of ur- ban road construction activities based on a hypothetical transport network, with an objective of mini- mizing the overall traffic delays. A heuristic algorithm was utilized to identify a set of road construction schedules, while PARAMICS was adopted to estimate the total travel time in the network under each road construction scenario. To test the performance of proposed heuristics-simulation methodology, a numerical test was implemented. The overall results suggested that the proposed methodol- ogy could quickly find the optimum solution with good convergence.
基金Supported by the National Natural Science Foundation of China (61174178)
文摘A method for road boundary detection and tracking using laser ladar with respect to a vehicle' s local coordinates is proposed. It can be applied to different types of road conditions, such as roads with or without curbs, having relatively rough road surface and with obstacles on road surface. In the method, some line segments are extracted after a series of preprocessing on range data. The extracted line segments are combined and further selected. They are then united to match the road models and generate the road boundary points which are tracked by Kalman filter. Then the obtained road boundary points are transformed to build a precise vector map by least squares fitting algorithm. These fitted line segments represent road boundary vectors. The vector map is precise enough to provide ample road information such as the orientation of road, the road width and the passable road region. Finally, extensive experiments conducted in urban and semi-urban environment demonstrate the robustness, effectiveness and viability of the proposed method.