The intelligent security system is a series of systems that use modern information technology means such as artificial intelligence, cloud computing, big data, face recognition to carry out comprehensive monitoring, e...The intelligent security system is a series of systems that use modern information technology means such as artificial intelligence, cloud computing, big data, face recognition to carry out comprehensive monitoring, early warning, prevention and control, disposal, etc, for security protection. It is the development trend of security system in the future, and it is also the basis for open sharing between higher education parks and universities. By using content analysis, unstructured interviews and other research methods, this paper deeply studies the feasibility and basic ideas of the construction of intelligent security system in Shahe Higher Education Park, and forms basic experience and typical practices through the project construction, which further promotes the more intelligent, standardized and scientific safety management in colleges and universities. It really provides an important theoretical basis and practical guidance for the opening and sharing between higher education parks and universities.展开更多
An intelligent security systems engineering approach is used to analyze fire and explosive critical incidents, a growing concern in urban communities. A feed-forward back-propagation neural network models the damages ...An intelligent security systems engineering approach is used to analyze fire and explosive critical incidents, a growing concern in urban communities. A feed-forward back-propagation neural network models the damages arising from these critical incidents. The overall goal is to promote fire safety and sustainable security. The intelligent security systems engineering prediction model uses a fully connected multilayer neural network, and considers a number of factors related to the fire or explosive incident including the type of property affected, the time of day, and the ignition source. The network was trained on a large number of critical incident records reported in Toronto, Canada between 2000 and 2006. Our intelligent security systems engineering approach can help emergency responders by improving cr^tical incident analysis, sustainable security, and fire risk management.展开更多
Deep Neural Networks(DNNs)are integral to various aspects of modern life,enhancing work efficiency.Nonethe-less,their susceptibility to diverse attack methods,including backdoor attacks,raises security concerns.We aim...Deep Neural Networks(DNNs)are integral to various aspects of modern life,enhancing work efficiency.Nonethe-less,their susceptibility to diverse attack methods,including backdoor attacks,raises security concerns.We aim to investigate backdoor attack methods for image categorization tasks,to promote the development of DNN towards higher security.Research on backdoor attacks currently faces significant challenges due to the distinct and abnormal data patterns of malicious samples,and the meticulous data screening by developers,hindering practical attack implementation.To overcome these challenges,this study proposes a Gaussian Noise-Targeted Universal Adversarial Perturbation(GN-TUAP)algorithm.This approach restricts the direction of perturbations and normalizes abnormal pixel values,ensuring that perturbations progress as much as possible in a direction perpendicular to the decision hyperplane in linear problems.This limits anomalies within the perturbations improves their visual stealthiness,and makes them more challenging for defense methods to detect.To verify the effectiveness,stealthiness,and robustness of GN-TUAP,we proposed a comprehensive threat model.Based on this model,extensive experiments were conducted using the CIFAR-10,CIFAR-100,GTSRB,and MNIST datasets,comparing our method with existing state-of-the-art attack methods.We also tested our perturbation triggers using various defense methods and further experimented on the robustness of the triggers against noise filtering techniques.The experimental outcomes demonstrate that backdoor attacks leveraging perturbations generated via our algorithm exhibit cross-model attack effectiveness and superior stealthiness.Furthermore,they possess robust anti-detection capabilities and maintain commendable performance when subjected to noise-filtering methods.展开更多
Information security is the backbone of current intelligent systems,such as the Internet of Things(IoT),smart grids,and Machine-to-Machine(M2M)communication.The increasing threat of information security requires new m...Information security is the backbone of current intelligent systems,such as the Internet of Things(IoT),smart grids,and Machine-to-Machine(M2M)communication.The increasing threat of information security requires new models to ensure the safe transmission of information through such systems.Recently,quantum systems have drawn much attention since they are expected to have a significant impact on the research in information security.This paper proposes a quantum teleportation scheme based on controlled multi-users to ensure the secure information transmission among users.Quantum teleportation is an original key element in a variety of quantum information tasks as well as quantum-based technologies,which plays a pivotal role in the current progress of quantum computing and communication.In the proposed scheme,the sender transmits the information to the receiver under the control of a third user or controller.Here,we show that the efficiency of the proposed scheme depends on the properties of the transmission channel and the honesty of the controller.Compared with various teleportation scheme presented recently in the literature,the most important difference in the proposed scheme is the possibility of suspicion about the honesty of the controller and,consequently,taking proper precautions.展开更多
Important Dates Submission due November 15, 2005 Notification of acceptance December 30, 2005 Camera-ready copy due January 10, 2006 Workshop Scope Intelligence and Security Informatics (ISI) can be broadly defined as...Important Dates Submission due November 15, 2005 Notification of acceptance December 30, 2005 Camera-ready copy due January 10, 2006 Workshop Scope Intelligence and Security Informatics (ISI) can be broadly defined as the study of the development and use of advanced information technologies and systems for national and international security-related applications. The First and Second Symposiums on ISI were held in Tucson,Arizona,in 2003 and 2004,respectively. In 2005,the IEEE International Conference on ISI was held in Atlanta,Georgia. These ISI conferences have brought together academic researchers,law enforcement and intelligence experts,information technology consultant and practitioners to discuss their research and practice related to various ISI topics including ISI data management,data and text mining for ISI applications,terrorism informatics,deception detection,terrorist and criminal social network analysis,crime analysis,monitoring and surveillance,policy studies and evaluation,information assurance,among others. We continue this stream of ISI conferences by organizing the Workshop on Intelligence and Security Informatics (WISI’06) in conjunction with the Pacific Asia Conference on Knowledge Discovery and Data Mining (PAKDD’06). WISI’06 will provide a stimulating forum for ISI researchers in Pacific Asia and other regions of the world to exchange ideas and report research progress. The workshop also welcomes contributions dealing with ISI challenges specific to the Pacific Asian region.展开更多
In the new era,the efficiency of public security intelligence analysis is one of the decisive factors for the reforms of public security work quality,efficiency as well as the impetus transforming,which also has a pro...In the new era,the efficiency of public security intelligence analysis is one of the decisive factors for the reforms of public security work quality,efficiency as well as the impetus transforming,which also has a profound impact on the strategic decision-making of public security work,risk prevention and control,the prevention of illegal and criminal activities as well.This article,by constructing SEM(Structural Equation Model)which takes the organizational support,perceived behavioral control,the intelligence sharing,external constraint factors,and public security intelligence analysis efficiency as latent variables,explores the deep inner link among latent variables,in order to provide the public security intelligence analysis efficiency with scientific,objective,and reliable guidance theory and practice research efficaciously.展开更多
Backdoor attacks are emerging security threats to deep neural networks.In these attacks,adversaries manipulate the network by constructing training samples embedded with backdoor triggers.The backdoored model performs...Backdoor attacks are emerging security threats to deep neural networks.In these attacks,adversaries manipulate the network by constructing training samples embedded with backdoor triggers.The backdoored model performs as expected on clean test samples but consistently misclassifies samples containing the backdoor trigger as a specific target label.While quantum neural networks(QNNs)have shown promise in surpassing their classical counterparts in certain machine learning tasks,they are also susceptible to backdoor attacks.However,current attacks on QNNs are constrained by the adversary's understanding of the model structure and specific encoding methods.Given the diversity of encoding methods and model structures in QNNs,the effectiveness of such backdoor attacks remains uncertain.In this paper,we propose an algorithm that leverages dataset-based optimization to initiate backdoor attacks.A malicious adversary can embed backdoor triggers into a QNN model by poisoning only a small portion of the data.The victim QNN maintains high accuracy on clean test samples without the trigger but outputs the target label set by the adversary when predicting samples with the trigger.Furthermore,our proposed attack cannot be easily resisted by existing backdoor detection methods.展开更多
文摘The intelligent security system is a series of systems that use modern information technology means such as artificial intelligence, cloud computing, big data, face recognition to carry out comprehensive monitoring, early warning, prevention and control, disposal, etc, for security protection. It is the development trend of security system in the future, and it is also the basis for open sharing between higher education parks and universities. By using content analysis, unstructured interviews and other research methods, this paper deeply studies the feasibility and basic ideas of the construction of intelligent security system in Shahe Higher Education Park, and forms basic experience and typical practices through the project construction, which further promotes the more intelligent, standardized and scientific safety management in colleges and universities. It really provides an important theoretical basis and practical guidance for the opening and sharing between higher education parks and universities.
文摘An intelligent security systems engineering approach is used to analyze fire and explosive critical incidents, a growing concern in urban communities. A feed-forward back-propagation neural network models the damages arising from these critical incidents. The overall goal is to promote fire safety and sustainable security. The intelligent security systems engineering prediction model uses a fully connected multilayer neural network, and considers a number of factors related to the fire or explosive incident including the type of property affected, the time of day, and the ignition source. The network was trained on a large number of critical incident records reported in Toronto, Canada between 2000 and 2006. Our intelligent security systems engineering approach can help emergency responders by improving cr^tical incident analysis, sustainable security, and fire risk management.
基金funded by National Natural Science Foundation of China under Grant No.61806171The Sichuan University of Science&Engineering Talent Project under Grant No.2021RC15Sichuan University of Science&Engineering Graduate Student Innovation Fund under Grant No.Y2023115,The Scientific Research and Innovation Team Program of Sichuan University of Science and Technology under Grant No.SUSE652A006.
文摘Deep Neural Networks(DNNs)are integral to various aspects of modern life,enhancing work efficiency.Nonethe-less,their susceptibility to diverse attack methods,including backdoor attacks,raises security concerns.We aim to investigate backdoor attack methods for image categorization tasks,to promote the development of DNN towards higher security.Research on backdoor attacks currently faces significant challenges due to the distinct and abnormal data patterns of malicious samples,and the meticulous data screening by developers,hindering practical attack implementation.To overcome these challenges,this study proposes a Gaussian Noise-Targeted Universal Adversarial Perturbation(GN-TUAP)algorithm.This approach restricts the direction of perturbations and normalizes abnormal pixel values,ensuring that perturbations progress as much as possible in a direction perpendicular to the decision hyperplane in linear problems.This limits anomalies within the perturbations improves their visual stealthiness,and makes them more challenging for defense methods to detect.To verify the effectiveness,stealthiness,and robustness of GN-TUAP,we proposed a comprehensive threat model.Based on this model,extensive experiments were conducted using the CIFAR-10,CIFAR-100,GTSRB,and MNIST datasets,comparing our method with existing state-of-the-art attack methods.We also tested our perturbation triggers using various defense methods and further experimented on the robustness of the triggers against noise filtering techniques.The experimental outcomes demonstrate that backdoor attacks leveraging perturbations generated via our algorithm exhibit cross-model attack effectiveness and superior stealthiness.Furthermore,they possess robust anti-detection capabilities and maintain commendable performance when subjected to noise-filtering methods.
文摘Information security is the backbone of current intelligent systems,such as the Internet of Things(IoT),smart grids,and Machine-to-Machine(M2M)communication.The increasing threat of information security requires new models to ensure the safe transmission of information through such systems.Recently,quantum systems have drawn much attention since they are expected to have a significant impact on the research in information security.This paper proposes a quantum teleportation scheme based on controlled multi-users to ensure the secure information transmission among users.Quantum teleportation is an original key element in a variety of quantum information tasks as well as quantum-based technologies,which plays a pivotal role in the current progress of quantum computing and communication.In the proposed scheme,the sender transmits the information to the receiver under the control of a third user or controller.Here,we show that the efficiency of the proposed scheme depends on the properties of the transmission channel and the honesty of the controller.Compared with various teleportation scheme presented recently in the literature,the most important difference in the proposed scheme is the possibility of suspicion about the honesty of the controller and,consequently,taking proper precautions.
文摘Important Dates Submission due November 15, 2005 Notification of acceptance December 30, 2005 Camera-ready copy due January 10, 2006 Workshop Scope Intelligence and Security Informatics (ISI) can be broadly defined as the study of the development and use of advanced information technologies and systems for national and international security-related applications. The First and Second Symposiums on ISI were held in Tucson,Arizona,in 2003 and 2004,respectively. In 2005,the IEEE International Conference on ISI was held in Atlanta,Georgia. These ISI conferences have brought together academic researchers,law enforcement and intelligence experts,information technology consultant and practitioners to discuss their research and practice related to various ISI topics including ISI data management,data and text mining for ISI applications,terrorism informatics,deception detection,terrorist and criminal social network analysis,crime analysis,monitoring and surveillance,policy studies and evaluation,information assurance,among others. We continue this stream of ISI conferences by organizing the Workshop on Intelligence and Security Informatics (WISI’06) in conjunction with the Pacific Asia Conference on Knowledge Discovery and Data Mining (PAKDD’06). WISI’06 will provide a stimulating forum for ISI researchers in Pacific Asia and other regions of the world to exchange ideas and report research progress. The workshop also welcomes contributions dealing with ISI challenges specific to the Pacific Asian region.
基金Young and Middle-Aged Social Science Program of China People’s Police University(ZQN202214,ZQN2020025).
文摘In the new era,the efficiency of public security intelligence analysis is one of the decisive factors for the reforms of public security work quality,efficiency as well as the impetus transforming,which also has a profound impact on the strategic decision-making of public security work,risk prevention and control,the prevention of illegal and criminal activities as well.This article,by constructing SEM(Structural Equation Model)which takes the organizational support,perceived behavioral control,the intelligence sharing,external constraint factors,and public security intelligence analysis efficiency as latent variables,explores the deep inner link among latent variables,in order to provide the public security intelligence analysis efficiency with scientific,objective,and reliable guidance theory and practice research efficaciously.
基金supported by the National Natural Science Foundation of China(Grant No.62076042)the National Key Research and Development Plan of China,Key Project of Cyberspace Security Governance(Grant No.2022YFB3103103)the Key Research and Development Project of Sichuan Province(Grant Nos.2022YFS0571,2021YFSY0012,2021YFG0332,and 2020YFG0307)。
文摘Backdoor attacks are emerging security threats to deep neural networks.In these attacks,adversaries manipulate the network by constructing training samples embedded with backdoor triggers.The backdoored model performs as expected on clean test samples but consistently misclassifies samples containing the backdoor trigger as a specific target label.While quantum neural networks(QNNs)have shown promise in surpassing their classical counterparts in certain machine learning tasks,they are also susceptible to backdoor attacks.However,current attacks on QNNs are constrained by the adversary's understanding of the model structure and specific encoding methods.Given the diversity of encoding methods and model structures in QNNs,the effectiveness of such backdoor attacks remains uncertain.In this paper,we propose an algorithm that leverages dataset-based optimization to initiate backdoor attacks.A malicious adversary can embed backdoor triggers into a QNN model by poisoning only a small portion of the data.The victim QNN maintains high accuracy on clean test samples without the trigger but outputs the target label set by the adversary when predicting samples with the trigger.Furthermore,our proposed attack cannot be easily resisted by existing backdoor detection methods.