Intelligent traffic control requires accurate estimation of the road states and incorporation of adaptive or dynamically adjusted intelligent algorithms for making the decision.In this article,these issues are handled...Intelligent traffic control requires accurate estimation of the road states and incorporation of adaptive or dynamically adjusted intelligent algorithms for making the decision.In this article,these issues are handled by proposing a novel framework for traffic control using vehicular communications and Internet of Things data.The framework integrates Kalman filtering and Q-learning.Unlike smoothing Kalman filtering,our data fusion Kalman filter incorporates a process-aware model which makes it superior in terms of the prediction error.Unlike traditional Q-learning,our Q-learning algorithm enables adaptive state quantization by changing the threshold of separating low traffic from high traffic on the road according to the maximum number of vehicles in the junction roads.For evaluation,the model has been simulated on a single intersection consisting of four roads:east,west,north,and south.A comparison of the developed adaptive quantized Q-learning(AQQL)framework with state-of-the-art and greedy approaches shows the superiority of AQQL with an improvement percentage in terms of the released number of vehicles of AQQL is 5%over the greedy approach and 340%over the state-of-the-art approach.Hence,AQQL provides an effective traffic control that can be applied in today’s intelligent traffic system.展开更多
The problem of traffic congestion is a significant phenomenon that has had a substantial impact on the transportation system within the country. This phenomenon has given rise to numerous intricacies, particularly in ...The problem of traffic congestion is a significant phenomenon that has had a substantial impact on the transportation system within the country. This phenomenon has given rise to numerous intricacies, particularly in instances where emergency situations occur at traffic light intersections that are consistently congested with a high volume of vehicles. This implementation of a traffic light controller system is designed with the intention of addressing this problem. The purpose of the system was to facilitate the operation of a 3-way traffic control light and provide priority to emergency vehicles using a Radio Frequency Identification (RFID) sensor and Reduced Instruction Set Computing (RISC) Architecture Based Microcontroller. This research work involved designing a system to mitigate the occurrence of accidents commonly observed at traffic light intersections, where vehicles often need to maneuver in order to make way for emergency vehicles following a designated route. The research effectively achieved the analysis, simulation and implementation of wireless communication devices for traffic light control. The implemented prototype utilizes RFID transmission, operates in conjunction with the sequential mode of traffic lights to alter the traffic light sequence accordingly and reverts the traffic lights back to their normal sequence after the emergency vehicle has passed the traffic lights.展开更多
The subversive nature of information war lies not only in the information itself, but also in the circulation and application of information. It has always been a challenge to quantitatively analyze the function and e...The subversive nature of information war lies not only in the information itself, but also in the circulation and application of information. It has always been a challenge to quantitatively analyze the function and effect of information flow through command, control, communications, computer, kill, intelligence,surveillance, reconnaissance (C4KISR) system. In this work, we propose a framework of force of information influence and the methods for calculating the force of information influence between C4KISR nodes of sensing, intelligence processing,decision making and fire attack. Specifically, the basic concept of force of information influence between nodes in C4KISR system is formally proposed and its mathematical definition is provided. Then, based on the information entropy theory, the model of force of information influence between C4KISR system nodes is constructed. Finally, the simulation experiments have been performed under an air defense and attack scenario. The experimental results show that, with the proposed force of information influence framework, we can effectively evaluate the contribution of information circulation through different C4KISR system nodes to the corresponding tasks. Our framework of force of information influence can also serve as an effective tool for the design and dynamic reconfiguration of C4KISR system architecture.展开更多
Purpose–The intelligent Central Traffic Control(CTC)system plays a vital role in establishing an intelligent high-speed railway(HSR)system.As the core of HSR transportation command,the intelligent CTC system is a new...Purpose–The intelligent Central Traffic Control(CTC)system plays a vital role in establishing an intelligent high-speed railway(HSR)system.As the core of HSR transportation command,the intelligent CTC system is a new HSR dispatching command system that integrates the widely used CTC in China with the practical service requirements of intelligent dispatching.This paper aims to propose key technologies and applications for intelligent dispatching command in HSR in China.Design/methodology/approach–This paper first briefly introduces the functions and configuration of the intelligent CTC system.Some new servers,terminals and interfaces are introduced,which are plan adjustment server/terminal,interface for automatic train operation(ATO),interface for Dynamic Monitoring System of Train Control Equipment(DMS),interface for Power Supervisory Control and Data Acquisition(PSCADA),interface for Disaster Monitoring,etc.Findings–The key technologies applied in the intelligent CTC system include automatic adjustment of train operation plans,safety control of train routes and commands,traffic information data platform,integrated simulation of traffic dispatching and ATO function.These technologies have been applied in the Beijing-Zhangjiakou HSR,which commenced operations at the end of 2019.Implementing these key intelligent functions has improved the train dispatching command capacity,ensured the safe operation of intelligent HSR,reduced the labor intensity of dispatching operators and enhanced the intelligence level of China’s dispatching system.Originality/value–This paper provides further challenges and research directions for the intelligent dispatching command of HSR.To achieve the objectives,new measures need to be conducted,including the development of advanced technologies for intelligent dispatching command,coping with new requirements with the development of China’s railway signaling system,the integration of traffic dispatching and train control and the application of AI and data-driven modeling and methods.展开更多
Due to excessive car usage,pollution and traffic have increased.In urban cities in Saudi Arabia,such as Riyadh and Jeddah,drivers and air quality suffer from traffic congestion.Although the government has implemented ...Due to excessive car usage,pollution and traffic have increased.In urban cities in Saudi Arabia,such as Riyadh and Jeddah,drivers and air quality suffer from traffic congestion.Although the government has implemented numerous solutions to resolve this issue or reduce its effect on the environment and residents,it still exists and is getting worse.This paper proposes an intelligent,adaptive,practical,and feasible deep learning method for intelligent traffic control.It uses an Internet of Things(IoT)sensor,a camera,and a Convolutional Neural Network(CNN)tool to control traffic in real time.An image segmentation algorithm analyzes inputs from the cameras installed in designated areas.This study considered whether CNNs and IoT technologies could ensure smooth traffic flow in high-speed,high-congestion situations.The presented algorithm calculates traffic density and cars’speeds to determine which lane gets high priority first.A real case study has been conducted on MATLAB to verify and validate the results of this approach.This algorithm estimates the reduced average waiting time during the red light and the suggested time for the green and red lights.An assessment between some literature works and the presented algorithm is also provided.In contrast to traditional traffic management methods,this intelligent and adaptive algorithm reduces traffic congestion,automobile waiting times,and accidents.展开更多
Traffic signal control(TSC)systems are one essential component in intelligent transport systems.However,relevant studies are usually independent of the urban traffic simulation environment,collaborative TSC algorithms...Traffic signal control(TSC)systems are one essential component in intelligent transport systems.However,relevant studies are usually independent of the urban traffic simulation environment,collaborative TSC algorithms and traffic signal communication.In this paper,we propose(1)an integrated and cooperative Internet-of-Things architecture,namely General City Traffic Computing System(GCTCS),which simultaneously leverages an urban traffic simulation environment,TSC algorithms,and traffic signal communication;and(2)a general multi-agent reinforcement learning algorithm,namely General-MARL,considering cooperation and communication between traffic lights for multi-intersection TSC.In experiments,we demonstrate that the integrated and cooperative architecture of GCTCS is much closer to the real-life traffic environment.The General-MARL increases the average movement speed of vehicles in traffic by 23.2%while decreases the network latency by 11.7%.展开更多
Air traffic control is an essential obligation in the aviation industry to have safe and efficient air transportation.Year by year,the workload and on-job-stress of the air traffic controllers are rapidly increasing d...Air traffic control is an essential obligation in the aviation industry to have safe and efficient air transportation.Year by year,the workload and on-job-stress of the air traffic controllers are rapidly increasing due to the rapid growth of air traveling.Controllers are usually dealing with multiple aircrafts at a time and must make quick and accurate decisions to ensure the safety of aircrafts.Heavy workload and high responsibilities create air traffic control a stressful job that sometimes could be error-prone and time-consuming,since controlling and decision-making are solely dependent on human intelligence.To provide effective solutions for the mentioned on the job challenges of the controllers,this study proposed an intelligent virtual assistant system(IVAS)to assist the controllers thereby to reduce the controllers’workload.Consisting of four main parts,which are voice recognition,display conversation on screen,task execution,and text to speech,the proposed system is developed with the aid of artificial intelligence(AI)techniques to make speedy decisions and be free of human interventions.IVAS is a computer-based system that can be activated by the voice of the air traffic controller and then appropriately assist to control the flight.IVAS identifies the words spoken by the controller and then a virtual assistant navigates to collect the data requested from the controllers,which allows additional or free time to the controllers to contemplate more on the work or could assist to another aircraft.The Google speech application programming interface(API)converts audio to text to recognize keywords.AI agent is trained using the Hidden marko model(HMM)algorithm such that it could learn the characteristics of the distinct voices of the controllers.At this stage,the proposed IVAS can be used to provide training for novice air traffic controllers effectively.The system is to be developed as a real-time system which could be used at the air traffic controlling base for actual traffic controlling purposes and the system is to be further upgraded to perform the task by recognizing keywords directly from the pilot voice command.展开更多
With a surge in the university’s student and staff population, parking problems and congestion have rapidly intensified. The recent inclusion of women drivers, particularly during official working hours, has exacerba...With a surge in the university’s student and staff population, parking problems and congestion have rapidly intensified. The recent inclusion of women drivers, particularly during official working hours, has exacerbated these challenges. This pressing issue underscores the critical necessity for a structured approach to managing university entries and overseeing parking at the gates. The proposed smart parking management system aims to address these concerns by introducing a design concept that restricts unauthorized access and provides exclusive parking privileges to authorized users. Through image processing, the system identifies available parking spaces, relaying real-time information to users via a mobile application. This comprehensive solution also generates detailed reports (daily, weekly, and monthly), aiding university safety authorities in future gate management decisions.展开更多
The basic principles of GPS (Global Positioning System) and DGPS (Differential GPS) are described. The principle and structure of vehicle navigation systems, and its application to the urban traffic flow guidance are ...The basic principles of GPS (Global Positioning System) and DGPS (Differential GPS) are described. The principle and structure of vehicle navigation systems, and its application to the urban traffic flow guidance are analyzed. Then, an area coordinated adaptive control system based on DGPS and a traffic flow guidance information system based on DGPS are put forward, and their working principles and functions are researched. This is to provides a new way for the development of urban road traffic control systems.展开更多
The development of scientific inquiry and research has yielded numerous benefits in the realm of intelligent traffic control systems, particularly in the realm of automatic license plate recognition for vehicles. The ...The development of scientific inquiry and research has yielded numerous benefits in the realm of intelligent traffic control systems, particularly in the realm of automatic license plate recognition for vehicles. The design of license plate recognition algorithms has undergone digitalization through the utilization of neural networks. In contemporary times, there is a growing demand for vehicle surveillance due to the need for efficient vehicle processing and traffic management. The design, development, and implementation of a license plate recognition system hold significant social, economic, and academic importance. The study aims to present contemporary methodologies and empirical findings pertaining to automated license plate recognition. The primary focus of the automatic license plate recognition algorithm was on image extraction, character segmentation, and recognition. The task of character segmentation has been identified as the most challenging function based on my observations. The license plate recognition project that we designed demonstrated the effectiveness of this method across various observed conditions. Particularly in low-light environments, such as during periods of limited illumination or inclement weather characterized by precipitation. The method has been subjected to testing using a sample size of fifty images, resulting in a 100% accuracy rate. The findings of this study demonstrate the project’s ability to effectively determine the optimal outcomes of simulations.展开更多
The traffic performance of urban expressway is subject to non-recurring and recurring events, which may cause heavy congestion and vehicles long queuing on ramps. The low performance may bring more traffic delay to th...The traffic performance of urban expressway is subject to non-recurring and recurring events, which may cause heavy congestion and vehicles long queuing on ramps. The low performance may bring more traffic delay to the whole network of urban road. This paper presents a new method, the joint control of variable speed control and on-ramp metering, which attempts to improve the level of traffic operations on urban expressway. By analyzing traffic flow on urban expressway, an optimum control strategy of variable speed and on-ramp metering is established in the paper.展开更多
This paper investigates the use of multi-agent deep Q-network(MADQN)to address the curse of dimensionality issue occurred in the traditional multi-agent reinforcement learning(MARL)approach.The proposed MADQN is appli...This paper investigates the use of multi-agent deep Q-network(MADQN)to address the curse of dimensionality issue occurred in the traditional multi-agent reinforcement learning(MARL)approach.The proposed MADQN is applied to traffic light controllers at multiple intersections with busy traffic and traffic disruptions,particularly rainfall.MADQN is based on deep Q-network(DQN),which is an integration of the traditional reinforcement learning(RL)and the newly emerging deep learning(DL)approaches.MADQN enables traffic light controllers to learn,exchange knowledge with neighboring agents,and select optimal joint actions in a collaborative manner.A case study based on a real traffic network is conducted as part of a sustainable urban city project in the Sunway City of Kuala Lumpur in Malaysia.Investigation is also performed using a grid traffic network(GTN)to understand that the proposed scheme is effective in a traditional traffic network.Our proposed scheme is evaluated using two simulation tools,namely Matlab and Simulation of Urban Mobility(SUMO).Our proposed scheme has shown that the cumulative delay of vehicles can be reduced by up to 30%in the simulations.展开更多
The spectral analysis of simulated N-team of interacting decision makers with bounded rationality constraints of Oladejo, which assumes triangular probability density function of command inputs is hereby restructured ...The spectral analysis of simulated N-team of interacting decision makers with bounded rationality constraints of Oladejo, which assumes triangular probability density function of command inputs is hereby restructured and analysed, to have hierarchical command inputs that are predicated on order statistics distributions. The results give optimal distributions.展开更多
More subtle and explicit QoS control mechanisms are required at the radio access level, even though the simple and scalable Differentiated Services (DiffServ) QoS control model is acceptable for the core of the networ...More subtle and explicit QoS control mechanisms are required at the radio access level, even though the simple and scalable Differentiated Services (DiffServ) QoS control model is acceptable for the core of the network. At the radio access level, available resources are severely limited and the degree of traffic aggregation is not significant, thus rendering the DiffServ principles less effective. In this paper we present a suitable hybrid QoS architecture framework to address the problem. At the wireless access end, the local QoS mechanism is designed in the context of IEEE 802.11 WLAN with 802.11e QoS extensions;so streams of those session-based applications are admitted, established according to the traffic profile they require, and guaranteed. As the core in the Admission Control of the hybrid QoS architecture, the Fair Intelligent Congestion Control (FICC) algorithm is applied to provide fairness among traffic aggregates and control congestion at the bottleneck interface between the wireless link and the network core via mechanisms of packet scheduling, buffer management, feedback and adjustments. It manages effectively the overloading scenario by preventing traffic violation from uncontrolled traffic, and providing guarantee to the priority traffic in terms of guaranteed bandwidth allocation and specified delay.展开更多
Seeking shortest travel times through smart algorithms may not only optimize the travel times but also reduce carbon emissions, such as CO2, CO and Hydro-Carbons. It can also result in reduced driver frustrations and ...Seeking shortest travel times through smart algorithms may not only optimize the travel times but also reduce carbon emissions, such as CO2, CO and Hydro-Carbons. It can also result in reduced driver frustrations and can increase passenger expectations of consistent travel times, which in turn points to benefits in overall planning of day schedules. Fuel consumption savings are another benefit from the same. However, attempts to elect the shortest path as an assumption of quick travel times, often work counter to the very objective intended and come with the risk of creating a “Braess Paradox” which is about congestion resulting when several drivers attempt to elect the same shortest route. The situation that arises has been referred to as the price of anarchy! We propose algorithms that find multiple shortest paths between an origin and a destination. It must be appreciated that these will not yield the exact number of Kilometers travelled, but favourable weights in terms of travel times so that a reasonable allowable time difference between the multiple shortest paths is attained when the same Origin and Destinations are considered and favourable responsive routes are determined as variables of traffic levels and time of day. These routes are selected on the paradigm of route balancing, re-routing algorithms and traffic light intelligence all coming together to result in optimized consistent travel times whose benefits are evenly spread to all motorist, unlike the Entropy balanced k shortest paths (EBkSP) method which favours some motorists on the basis of urgency. This paper proposes a Fully Balanced Multiple-Candidate shortest path (FBMkP) by which we model in SUMO to overcome the computational overhead of assigning priority differently to each travelling vehicle using intelligence at intersections and other points on the vehicular network. The FBMkP opens up traffic by fully balancing the whole network so as to benefit every motorist. Whereas the EBkSP reserves some routes for cars on high priority, our algorithm distributes the benefits of smart routing to all vehicles on the network and serves the road side units such as induction loops and detectors from having to remember the urgency of each vehicle. Instead, detectors and induction loops simply have to poll the destination of the vehicle and not any urgency factor. The minimal data being processed significantly reduce computational times and the benefits all vehicles. The multiple-candidate shortest paths selected on the basis of current traffic status on each possible route increase the efficiency. Routes are fewer than vehicles so possessing weights of routes is smarter than processing individual vehicle weights. This is a multi-objective function project where improving one factor such as travel times improves many more cost, social and environmental factors.展开更多
The growing number of vehicles makes traffic jams and accidents significant problems. Making people get to know the real-time road condition can mitigate the effect of congestions greatly, but this is not supported by...The growing number of vehicles makes traffic jams and accidents significant problems. Making people get to know the real-time road condition can mitigate the effect of congestions greatly, but this is not supported by traditional traffic assistant systems. The intelligent traffic system is born to settle these problems. By making full use of the ArcGIS (Arc Geographic Information System) Engine characteristics, this paper designs and imple- ments an urban traffic monitoring system. The main functions of the system include the real-time road condition information display, layer-control, supervisory control management and the basic operations of a map. With the data collected by monitors deployed in intersections, different road conditions are calculated and shown with dif- ferent colors on the map and users can choose suitable roads to get away from the traffic congestion; meanwhile it can offer a reference for a traffic management department to make decisions on traffic control. The system has been deployed and shows high practicability and reliability in practical use.展开更多
In view of the practical application of centralized traffic control(CTC)system of the Beijing-Shanghai HSR and in combination with the line conditions and user requirements,the system is optimized in terms of route se...In view of the practical application of centralized traffic control(CTC)system of the Beijing-Shanghai HSR and in combination with the line conditions and user requirements,the system is optimized in terms of route self-triggering polling frequency,train receiving route self-triggering timing,train departure route section processing,route self-triggering between yards,wireless route forecasting and automatic train number conversion,which improves the efficiency of automatic route setting of CTC system and the adaptability of high-density and long-major lines.At the same time,according to the intelligent development requirements of railways,the paper proposes the expectation for the centralized traffic control system of the Beijing-Shanghai HSR in terms of intelligent adjustment of TWD,information sharing with traction power supply supervisory control and data acquisition(SCADA)system/disaster monitoring system,intelligent linkage of posts,etc.展开更多
文摘Intelligent traffic control requires accurate estimation of the road states and incorporation of adaptive or dynamically adjusted intelligent algorithms for making the decision.In this article,these issues are handled by proposing a novel framework for traffic control using vehicular communications and Internet of Things data.The framework integrates Kalman filtering and Q-learning.Unlike smoothing Kalman filtering,our data fusion Kalman filter incorporates a process-aware model which makes it superior in terms of the prediction error.Unlike traditional Q-learning,our Q-learning algorithm enables adaptive state quantization by changing the threshold of separating low traffic from high traffic on the road according to the maximum number of vehicles in the junction roads.For evaluation,the model has been simulated on a single intersection consisting of four roads:east,west,north,and south.A comparison of the developed adaptive quantized Q-learning(AQQL)framework with state-of-the-art and greedy approaches shows the superiority of AQQL with an improvement percentage in terms of the released number of vehicles of AQQL is 5%over the greedy approach and 340%over the state-of-the-art approach.Hence,AQQL provides an effective traffic control that can be applied in today’s intelligent traffic system.
文摘The problem of traffic congestion is a significant phenomenon that has had a substantial impact on the transportation system within the country. This phenomenon has given rise to numerous intricacies, particularly in instances where emergency situations occur at traffic light intersections that are consistently congested with a high volume of vehicles. This implementation of a traffic light controller system is designed with the intention of addressing this problem. The purpose of the system was to facilitate the operation of a 3-way traffic control light and provide priority to emergency vehicles using a Radio Frequency Identification (RFID) sensor and Reduced Instruction Set Computing (RISC) Architecture Based Microcontroller. This research work involved designing a system to mitigate the occurrence of accidents commonly observed at traffic light intersections, where vehicles often need to maneuver in order to make way for emergency vehicles following a designated route. The research effectively achieved the analysis, simulation and implementation of wireless communication devices for traffic light control. The implemented prototype utilizes RFID transmission, operates in conjunction with the sequential mode of traffic lights to alter the traffic light sequence accordingly and reverts the traffic lights back to their normal sequence after the emergency vehicle has passed the traffic lights.
基金supported by the Natural Science Foundation Research Plan of Shanxi Province (2023JCQN0728)。
文摘The subversive nature of information war lies not only in the information itself, but also in the circulation and application of information. It has always been a challenge to quantitatively analyze the function and effect of information flow through command, control, communications, computer, kill, intelligence,surveillance, reconnaissance (C4KISR) system. In this work, we propose a framework of force of information influence and the methods for calculating the force of information influence between C4KISR nodes of sensing, intelligence processing,decision making and fire attack. Specifically, the basic concept of force of information influence between nodes in C4KISR system is formally proposed and its mathematical definition is provided. Then, based on the information entropy theory, the model of force of information influence between C4KISR system nodes is constructed. Finally, the simulation experiments have been performed under an air defense and attack scenario. The experimental results show that, with the proposed force of information influence framework, we can effectively evaluate the contribution of information circulation through different C4KISR system nodes to the corresponding tasks. Our framework of force of information influence can also serve as an effective tool for the design and dynamic reconfiguration of C4KISR system architecture.
基金This work was supported in part by the National Natural Science Foundation of China under Grant 62203468Young Elite Scientist Sponsorship Program by CAST under Grant 2022QNRC001+1 种基金Foundation of China State Railway Group Co.,Ltd.under Grant K2021X001Foundation of China Academy of Railway Sciences Corporation Limited under Grant 2021YJ315.
文摘Purpose–The intelligent Central Traffic Control(CTC)system plays a vital role in establishing an intelligent high-speed railway(HSR)system.As the core of HSR transportation command,the intelligent CTC system is a new HSR dispatching command system that integrates the widely used CTC in China with the practical service requirements of intelligent dispatching.This paper aims to propose key technologies and applications for intelligent dispatching command in HSR in China.Design/methodology/approach–This paper first briefly introduces the functions and configuration of the intelligent CTC system.Some new servers,terminals and interfaces are introduced,which are plan adjustment server/terminal,interface for automatic train operation(ATO),interface for Dynamic Monitoring System of Train Control Equipment(DMS),interface for Power Supervisory Control and Data Acquisition(PSCADA),interface for Disaster Monitoring,etc.Findings–The key technologies applied in the intelligent CTC system include automatic adjustment of train operation plans,safety control of train routes and commands,traffic information data platform,integrated simulation of traffic dispatching and ATO function.These technologies have been applied in the Beijing-Zhangjiakou HSR,which commenced operations at the end of 2019.Implementing these key intelligent functions has improved the train dispatching command capacity,ensured the safe operation of intelligent HSR,reduced the labor intensity of dispatching operators and enhanced the intelligence level of China’s dispatching system.Originality/value–This paper provides further challenges and research directions for the intelligent dispatching command of HSR.To achieve the objectives,new measures need to be conducted,including the development of advanced technologies for intelligent dispatching command,coping with new requirements with the development of China’s railway signaling system,the integration of traffic dispatching and train control and the application of AI and data-driven modeling and methods.
基金This research work was funded by Institutional Fund Projects under Grant No.(IFPIP:707-829-1443)The authors gratefully acknowledge technical and financial support provided by theMinistry of Education and King Abdulaziz University,DSR,Jeddah,Saudi Arabia.
文摘Due to excessive car usage,pollution and traffic have increased.In urban cities in Saudi Arabia,such as Riyadh and Jeddah,drivers and air quality suffer from traffic congestion.Although the government has implemented numerous solutions to resolve this issue or reduce its effect on the environment and residents,it still exists and is getting worse.This paper proposes an intelligent,adaptive,practical,and feasible deep learning method for intelligent traffic control.It uses an Internet of Things(IoT)sensor,a camera,and a Convolutional Neural Network(CNN)tool to control traffic in real time.An image segmentation algorithm analyzes inputs from the cameras installed in designated areas.This study considered whether CNNs and IoT technologies could ensure smooth traffic flow in high-speed,high-congestion situations.The presented algorithm calculates traffic density and cars’speeds to determine which lane gets high priority first.A real case study has been conducted on MATLAB to verify and validate the results of this approach.This algorithm estimates the reduced average waiting time during the red light and the suggested time for the green and red lights.An assessment between some literature works and the presented algorithm is also provided.In contrast to traditional traffic management methods,this intelligent and adaptive algorithm reduces traffic congestion,automobile waiting times,and accidents.
基金supported by the National Natural Science Foundation of China(Grant Nos.61673150,11622538).
文摘Traffic signal control(TSC)systems are one essential component in intelligent transport systems.However,relevant studies are usually independent of the urban traffic simulation environment,collaborative TSC algorithms and traffic signal communication.In this paper,we propose(1)an integrated and cooperative Internet-of-Things architecture,namely General City Traffic Computing System(GCTCS),which simultaneously leverages an urban traffic simulation environment,TSC algorithms,and traffic signal communication;and(2)a general multi-agent reinforcement learning algorithm,namely General-MARL,considering cooperation and communication between traffic lights for multi-intersection TSC.In experiments,we demonstrate that the integrated and cooperative architecture of GCTCS is much closer to the real-life traffic environment.The General-MARL increases the average movement speed of vehicles in traffic by 23.2%while decreases the network latency by 11.7%.
文摘Air traffic control is an essential obligation in the aviation industry to have safe and efficient air transportation.Year by year,the workload and on-job-stress of the air traffic controllers are rapidly increasing due to the rapid growth of air traveling.Controllers are usually dealing with multiple aircrafts at a time and must make quick and accurate decisions to ensure the safety of aircrafts.Heavy workload and high responsibilities create air traffic control a stressful job that sometimes could be error-prone and time-consuming,since controlling and decision-making are solely dependent on human intelligence.To provide effective solutions for the mentioned on the job challenges of the controllers,this study proposed an intelligent virtual assistant system(IVAS)to assist the controllers thereby to reduce the controllers’workload.Consisting of four main parts,which are voice recognition,display conversation on screen,task execution,and text to speech,the proposed system is developed with the aid of artificial intelligence(AI)techniques to make speedy decisions and be free of human interventions.IVAS is a computer-based system that can be activated by the voice of the air traffic controller and then appropriately assist to control the flight.IVAS identifies the words spoken by the controller and then a virtual assistant navigates to collect the data requested from the controllers,which allows additional or free time to the controllers to contemplate more on the work or could assist to another aircraft.The Google speech application programming interface(API)converts audio to text to recognize keywords.AI agent is trained using the Hidden marko model(HMM)algorithm such that it could learn the characteristics of the distinct voices of the controllers.At this stage,the proposed IVAS can be used to provide training for novice air traffic controllers effectively.The system is to be developed as a real-time system which could be used at the air traffic controlling base for actual traffic controlling purposes and the system is to be further upgraded to perform the task by recognizing keywords directly from the pilot voice command.
文摘With a surge in the university’s student and staff population, parking problems and congestion have rapidly intensified. The recent inclusion of women drivers, particularly during official working hours, has exacerbated these challenges. This pressing issue underscores the critical necessity for a structured approach to managing university entries and overseeing parking at the gates. The proposed smart parking management system aims to address these concerns by introducing a design concept that restricts unauthorized access and provides exclusive parking privileges to authorized users. Through image processing, the system identifies available parking spaces, relaying real-time information to users via a mobile application. This comprehensive solution also generates detailed reports (daily, weekly, and monthly), aiding university safety authorities in future gate management decisions.
文摘The basic principles of GPS (Global Positioning System) and DGPS (Differential GPS) are described. The principle and structure of vehicle navigation systems, and its application to the urban traffic flow guidance are analyzed. Then, an area coordinated adaptive control system based on DGPS and a traffic flow guidance information system based on DGPS are put forward, and their working principles and functions are researched. This is to provides a new way for the development of urban road traffic control systems.
文摘The development of scientific inquiry and research has yielded numerous benefits in the realm of intelligent traffic control systems, particularly in the realm of automatic license plate recognition for vehicles. The design of license plate recognition algorithms has undergone digitalization through the utilization of neural networks. In contemporary times, there is a growing demand for vehicle surveillance due to the need for efficient vehicle processing and traffic management. The design, development, and implementation of a license plate recognition system hold significant social, economic, and academic importance. The study aims to present contemporary methodologies and empirical findings pertaining to automated license plate recognition. The primary focus of the automatic license plate recognition algorithm was on image extraction, character segmentation, and recognition. The task of character segmentation has been identified as the most challenging function based on my observations. The license plate recognition project that we designed demonstrated the effectiveness of this method across various observed conditions. Particularly in low-light environments, such as during periods of limited illumination or inclement weather characterized by precipitation. The method has been subjected to testing using a sample size of fifty images, resulting in a 100% accuracy rate. The findings of this study demonstrate the project’s ability to effectively determine the optimal outcomes of simulations.
文摘The traffic performance of urban expressway is subject to non-recurring and recurring events, which may cause heavy congestion and vehicles long queuing on ramps. The low performance may bring more traffic delay to the whole network of urban road. This paper presents a new method, the joint control of variable speed control and on-ramp metering, which attempts to improve the level of traffic operations on urban expressway. By analyzing traffic flow on urban expressway, an optimum control strategy of variable speed and on-ramp metering is established in the paper.
文摘This paper investigates the use of multi-agent deep Q-network(MADQN)to address the curse of dimensionality issue occurred in the traditional multi-agent reinforcement learning(MARL)approach.The proposed MADQN is applied to traffic light controllers at multiple intersections with busy traffic and traffic disruptions,particularly rainfall.MADQN is based on deep Q-network(DQN),which is an integration of the traditional reinforcement learning(RL)and the newly emerging deep learning(DL)approaches.MADQN enables traffic light controllers to learn,exchange knowledge with neighboring agents,and select optimal joint actions in a collaborative manner.A case study based on a real traffic network is conducted as part of a sustainable urban city project in the Sunway City of Kuala Lumpur in Malaysia.Investigation is also performed using a grid traffic network(GTN)to understand that the proposed scheme is effective in a traditional traffic network.Our proposed scheme is evaluated using two simulation tools,namely Matlab and Simulation of Urban Mobility(SUMO).Our proposed scheme has shown that the cumulative delay of vehicles can be reduced by up to 30%in the simulations.
文摘The spectral analysis of simulated N-team of interacting decision makers with bounded rationality constraints of Oladejo, which assumes triangular probability density function of command inputs is hereby restructured and analysed, to have hierarchical command inputs that are predicated on order statistics distributions. The results give optimal distributions.
文摘More subtle and explicit QoS control mechanisms are required at the radio access level, even though the simple and scalable Differentiated Services (DiffServ) QoS control model is acceptable for the core of the network. At the radio access level, available resources are severely limited and the degree of traffic aggregation is not significant, thus rendering the DiffServ principles less effective. In this paper we present a suitable hybrid QoS architecture framework to address the problem. At the wireless access end, the local QoS mechanism is designed in the context of IEEE 802.11 WLAN with 802.11e QoS extensions;so streams of those session-based applications are admitted, established according to the traffic profile they require, and guaranteed. As the core in the Admission Control of the hybrid QoS architecture, the Fair Intelligent Congestion Control (FICC) algorithm is applied to provide fairness among traffic aggregates and control congestion at the bottleneck interface between the wireless link and the network core via mechanisms of packet scheduling, buffer management, feedback and adjustments. It manages effectively the overloading scenario by preventing traffic violation from uncontrolled traffic, and providing guarantee to the priority traffic in terms of guaranteed bandwidth allocation and specified delay.
文摘Seeking shortest travel times through smart algorithms may not only optimize the travel times but also reduce carbon emissions, such as CO2, CO and Hydro-Carbons. It can also result in reduced driver frustrations and can increase passenger expectations of consistent travel times, which in turn points to benefits in overall planning of day schedules. Fuel consumption savings are another benefit from the same. However, attempts to elect the shortest path as an assumption of quick travel times, often work counter to the very objective intended and come with the risk of creating a “Braess Paradox” which is about congestion resulting when several drivers attempt to elect the same shortest route. The situation that arises has been referred to as the price of anarchy! We propose algorithms that find multiple shortest paths between an origin and a destination. It must be appreciated that these will not yield the exact number of Kilometers travelled, but favourable weights in terms of travel times so that a reasonable allowable time difference between the multiple shortest paths is attained when the same Origin and Destinations are considered and favourable responsive routes are determined as variables of traffic levels and time of day. These routes are selected on the paradigm of route balancing, re-routing algorithms and traffic light intelligence all coming together to result in optimized consistent travel times whose benefits are evenly spread to all motorist, unlike the Entropy balanced k shortest paths (EBkSP) method which favours some motorists on the basis of urgency. This paper proposes a Fully Balanced Multiple-Candidate shortest path (FBMkP) by which we model in SUMO to overcome the computational overhead of assigning priority differently to each travelling vehicle using intelligence at intersections and other points on the vehicular network. The FBMkP opens up traffic by fully balancing the whole network so as to benefit every motorist. Whereas the EBkSP reserves some routes for cars on high priority, our algorithm distributes the benefits of smart routing to all vehicles on the network and serves the road side units such as induction loops and detectors from having to remember the urgency of each vehicle. Instead, detectors and induction loops simply have to poll the destination of the vehicle and not any urgency factor. The minimal data being processed significantly reduce computational times and the benefits all vehicles. The multiple-candidate shortest paths selected on the basis of current traffic status on each possible route increase the efficiency. Routes are fewer than vehicles so possessing weights of routes is smarter than processing individual vehicle weights. This is a multi-objective function project where improving one factor such as travel times improves many more cost, social and environmental factors.
文摘The growing number of vehicles makes traffic jams and accidents significant problems. Making people get to know the real-time road condition can mitigate the effect of congestions greatly, but this is not supported by traditional traffic assistant systems. The intelligent traffic system is born to settle these problems. By making full use of the ArcGIS (Arc Geographic Information System) Engine characteristics, this paper designs and imple- ments an urban traffic monitoring system. The main functions of the system include the real-time road condition information display, layer-control, supervisory control management and the basic operations of a map. With the data collected by monitors deployed in intersections, different road conditions are calculated and shown with dif- ferent colors on the map and users can choose suitable roads to get away from the traffic congestion; meanwhile it can offer a reference for a traffic management department to make decisions on traffic control. The system has been deployed and shows high practicability and reliability in practical use.
文摘In view of the practical application of centralized traffic control(CTC)system of the Beijing-Shanghai HSR and in combination with the line conditions and user requirements,the system is optimized in terms of route self-triggering polling frequency,train receiving route self-triggering timing,train departure route section processing,route self-triggering between yards,wireless route forecasting and automatic train number conversion,which improves the efficiency of automatic route setting of CTC system and the adaptability of high-density and long-major lines.At the same time,according to the intelligent development requirements of railways,the paper proposes the expectation for the centralized traffic control system of the Beijing-Shanghai HSR in terms of intelligent adjustment of TWD,information sharing with traction power supply supervisory control and data acquisition(SCADA)system/disaster monitoring system,intelligent linkage of posts,etc.