期刊文献+
共找到44,025篇文章
< 1 2 250 >
每页显示 20 50 100
Privacy-Preserving Large-Scale AI Models for Intelligent Railway Transportation Systems:Hierarchical Poisoning Attacks and Defenses in Federated Learning
1
作者 Yongsheng Zhu Chong Liu +8 位作者 Chunlei Chen Xiaoting Lyu Zheng Chen Bin Wang Fuqiang Hu Hanxi Li Jiao Dai Baigen Cai Wei Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第11期1305-1325,共21页
The development of Intelligent Railway Transportation Systems necessitates incorporating privacy-preserving mechanisms into AI models to protect sensitive information and enhance system efficiency.Federated learning o... The development of Intelligent Railway Transportation Systems necessitates incorporating privacy-preserving mechanisms into AI models to protect sensitive information and enhance system efficiency.Federated learning offers a promising solution by allowing multiple clients to train models collaboratively without sharing private data.However,despite its privacy benefits,federated learning systems are vulnerable to poisoning attacks,where adversaries alter local model parameters on compromised clients and send malicious updates to the server,potentially compromising the global model’s accuracy.In this study,we introduce PMM(Perturbation coefficient Multiplied by Maximum value),a new poisoning attack method that perturbs model updates layer by layer,demonstrating the threat of poisoning attacks faced by federated learning.Extensive experiments across three distinct datasets have demonstrated PMM’s ability to significantly reduce the global model’s accuracy.Additionally,we propose an effective defense method,namely CLBL(Cluster Layer By Layer).Experiment results on three datasets have confirmed CLBL’s effectiveness. 展开更多
关键词 PRIVACY-PRESERVING intelligent railway transportation system federated learning poisoning attacks DEFENSES
下载PDF
Building trust for traffic flow forecasting components in intelligent transportation systems via interpretable ensemble learning
2
作者 Jishun Ou Jingyuan Li +2 位作者 Chen Wang Yun Wang Qinghui Nie 《Digital Transportation and Safety》 2024年第3期126-143,I0001,I0002,共20页
Traffic flow forecasting constitutes a crucial component of intelligent transportation systems(ITSs).Numerous studies have been conducted for traffic flow forecasting during the past decades.However,most existing stud... Traffic flow forecasting constitutes a crucial component of intelligent transportation systems(ITSs).Numerous studies have been conducted for traffic flow forecasting during the past decades.However,most existing studies have concentrated on developing advanced algorithms or models to attain state-of-the-art forecasting accuracy.For real-world ITS applications,the interpretability of the developed models is extremely important but has largely been ignored.This study presents an interpretable traffic flow forecasting framework based on popular tree-ensemble algorithms.The framework comprises multiple key components integrated into a highly flexible and customizable multi-stage pipeline,enabling the seamless incorporation of various algorithms and tools.To evaluate the effectiveness of the framework,the developed tree-ensemble models and another three typical categories of baseline models,including statistical time series,shallow learning,and deep learning,were compared on three datasets collected from different types of roads(i.e.,arterial,expressway,and freeway).Further,the study delves into an in-depth interpretability analysis of the most competitive tree-ensemble models using six categories of interpretable machine learning methods.Experimental results highlight the potential of the proposed framework.The tree-ensemble models developed within this framework achieve competitive accuracy while maintaining high inference efficiency similar to statistical time series and shallow learning models.Meanwhile,these tree-ensemble models offer interpretability from multiple perspectives via interpretable machine-learning techniques.The proposed framework is anticipated to provide reliable and trustworthy decision support across various ITS applications. 展开更多
关键词 Traffic flow forecasting Interpretable machine learning INTERPRETABILITY Ensemble trees intelligent transportation systems
下载PDF
End-to-End Joint Multi-Object Detection and Tracking for Intelligent Transportation Systems
3
作者 Qing Xu Xuewu Lin +6 位作者 Mengchi Cai Yu‑ang Guo Chuang Zhang Kai Li Keqiang Li Jianqiang Wang Dongpu Cao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第5期280-290,共11页
Environment perception is one of the most critical technology of intelligent transportation systems(ITS).Motion interaction between multiple vehicles in ITS makes it important to perform multi-object tracking(MOT).How... Environment perception is one of the most critical technology of intelligent transportation systems(ITS).Motion interaction between multiple vehicles in ITS makes it important to perform multi-object tracking(MOT).However,most existing MOT algorithms follow the tracking-by-detection framework,which separates detection and tracking into two independent segments and limit the global efciency.Recently,a few algorithms have combined feature extraction into one network;however,the tracking portion continues to rely on data association,and requires com‑plex post-processing for life cycle management.Those methods do not combine detection and tracking efciently.This paper presents a novel network to realize joint multi-object detection and tracking in an end-to-end manner for ITS,named as global correlation network(GCNet).Unlike most object detection methods,GCNet introduces a global correlation layer for regression of absolute size and coordinates of bounding boxes,instead of ofsetting predictions.The pipeline of detection and tracking in GCNet is conceptually simple,and does not require compli‑cated tracking strategies such as non-maximum suppression and data association.GCNet was evaluated on a multivehicle tracking dataset,UA-DETRAC,demonstrating promising performance compared to state-of-the-art detectors and trackers. 展开更多
关键词 intelligent transportation systems Joint detection and tracking Global correlation network End-to-end tracking
下载PDF
A deep learning based misbehavior classification scheme for intrusion detection in cooperative intelligent transportation systems
4
作者 Tejasvi Alladi Varun Kohli +1 位作者 Vinay Chamola F.Richard Yu 《Digital Communications and Networks》 SCIE CSCD 2023年第5期1113-1122,共10页
With the rise of the Internet of Vehicles(IoV)and the number of connected vehicles increasing on the roads,Cooperative Intelligent Transportation Systems(C-ITSs)have become an important area of research.As the number ... With the rise of the Internet of Vehicles(IoV)and the number of connected vehicles increasing on the roads,Cooperative Intelligent Transportation Systems(C-ITSs)have become an important area of research.As the number of Vehicle to Vehicle(V2V)and Vehicle to Interface(V2I)communication links increases,the amount of data received and processed in the network also increases.In addition,networking interfaces need to be made more secure for which existing cryptography-based security schemes may not be sufficient.Thus,there is a need to augment them with intelligent network intrusion detection techniques.Some machine learning-based intrusion detection and anomaly detection techniques for vehicular networks have been proposed in recent times.However,given the expected large network size,there is a necessity for extensive data processing for use in such anomaly detection methods.Deep learning solutions are lucrative options as they remove the necessity for feature selection.Therefore,with the amount of vehicular network traffic increasing at an unprecedented rate in the C-ITS scenario,the need for deep learning-based techniques is all the more heightened.This work presents three deep learning-based misbehavior classification schemes for intrusion detection in IoV networks using Long Short Term Memory(LSTM)and Convolutional Neural Networks(CNNs).The proposed Deep Learning Classification Engines(DCLE)comprise of single or multi-step classification done by deep learning models that are deployed on the vehicular edge servers.Vehicular data received by the Road Side Units(RSUs)is pre-processed and forwarded to the edge server for classifications following the three classification schemes proposed in this paper.The proposed classifiers identify 18 different vehicular behavior types,the F1-scores ranging from 95.58%to 96.75%,much higher than the existing works.By running the classifiers on testbeds emulating edge servers,the prediction performance and prediction time comparison of the proposed scheme is compared with those of the existing studies. 展开更多
关键词 Vehicular Ad-hoc Networks(VANETs) intelligent transportation systems(its) Artificial Intelligence(AI) Deep Learning Internet of Things(IoT)
下载PDF
Design and Application of Intelligent Control System for Molten Iron Transportation Based on 5G Technology
5
作者 Borui Wang 《Frontiers of Metallurgical Industry》 2024年第2期21-24,共4页
Molten transport is an important link in the iron and steel enterprise production,involves many complex factors,artificial management is difficult.Therefore,puts forward a kind of molten iron transport wisdom control ... Molten transport is an important link in the iron and steel enterprise production,involves many complex factors,artificial management is difficult.Therefore,puts forward a kind of molten iron transport wisdom control system based on 5G technology,which mainly contains the intelligent identification tracking system,equipment status collection information acquisition system,locomotive vehicle terminal system,etc.Combined with the analysis of the actual application situation,the system could integrate all the processes and elements of molten iron produc-tion and transportation,realize the integration of operation and management,and also promote the improvement of the turnover efficiency of molten iron tank,reduce the demand for personnel,and reduce the labor cost. 展开更多
关键词 5G technology molten iron transportation intelligent control system
下载PDF
A Nationwide Evaluation of the State of Practice of Performance Measurements for Intelligent Transportation Systems
6
作者 Kwabena A. Abedi Julius Codjoe Raju Thapa 《Journal of Transportation Technologies》 2023年第2期222-242,共21页
State departments of transportation’s (DOTs) decisions to invest resources to expand or implement intelligent transportation systems (ITS) programs or even retire existing infrastructure need to be based on performan... State departments of transportation’s (DOTs) decisions to invest resources to expand or implement intelligent transportation systems (ITS) programs or even retire existing infrastructure need to be based on performance evaluations. Nonetheless, an apparent gap exists between the need for ITS performance measurements and the actual implementation. The evidence available points to challenges in the ITS performance measurement processes. This paper evaluated the state of practice of performance measurement for ITS across the US and provided insights. A comprehensive literature review assessed the use of performance measures by DOTs for monitoring implemented ITS programs. Based on the gaps identified through the literature review, a nationwide qualitative survey was used to gather insights from key stakeholders on the subject matter and presented in this paper. From the data gathered, performance measurement of ITS is fairly integrated into ITS programs by DOTs, with most agencies considering the process beneficial. There, however, exist reasons that prevent agencies from measuring ITS performance to greater detail and quality. These include lack of data, fragmented or incomparable data formats, the complexity of the endeavor, lack of data scientists, and difficulty assigning responsibilities when inter-agency collaboration is required. Additionally, DOTs do not benchmark or compare their ITS performance with others for reasons that include lack of data, lack of guidance or best practices, and incomparable data formats. This paper is relevant as it provides insights expected to guide DOTs and other agencies in developing or reevaluating their ITS performance measurement processes. 展开更多
关键词 intelligent transportation systems its Performance Measures its Architecture ARC-IT Qualitative Survey EVALUATION NATIONWIDE
下载PDF
Optimal Routing with Spatial-Temporal Dependencies for Traffic Flow Control in Intelligent Transportation Systems
7
作者 R.B.Sarooraj S.Prayla Shyry 《Intelligent Automation & Soft Computing》 SCIE 2023年第5期2071-2084,共14页
In Intelligent Transportation Systems(ITS),controlling the trafficflow of a region in a city is the major challenge.Particularly,allocation of the traffic-free route to the taxi drivers during peak hours is one of the ch... In Intelligent Transportation Systems(ITS),controlling the trafficflow of a region in a city is the major challenge.Particularly,allocation of the traffic-free route to the taxi drivers during peak hours is one of the challenges to control the trafficflow.So,in this paper,the route between the taxi driver and pickup location or hotspot with the spatial-temporal dependencies is optimized.Initially,the hotspots in a region are clustered using the density-based spatial clustering of applications with noise(DBSCAN)algorithm tofind the hot spots at the peak hours in an urban area.Then,the optimal route is allocated to the taxi driver to pick up the customer in the hotspot.Before allocating the optimal route,each route between the taxi driver and the hot spot is mapped to the number of taxi drivers.Among the map function,the optimal map is selected using the rain opti-mization algorithm(ROA).If more than one map function is obtained as the opti-mal solution,the map between the route and the taxi driver who has done the least number of trips in the day is chosen as thefinal solution This optimal route selec-tion leads to control of the trafficflow at peak hours.Evaluation of the approach depicts that the proposed trafficflow control scheme reduces traveling time,wait-ing time,fuel consumption,and emission. 展开更多
关键词 intelligent transportation system(its) DBSCAN rain optimization algorithm(ROA) trafficflow control
下载PDF
基于ITSS的智慧教学空间运维体系设计研究
8
作者 李彦朝 《浙江交通职业技术学院学报》 CAS 2024年第3期50-55,共6页
当前数字技术与教学环境深度融合的智慧教学空间极大支持了教学新模式的开展,但存在教学空间内设备和系统复杂且运维工作量逐年增加,以及运维服务工作面临流程难追溯、资源易流失、技术不匹配等诸多问题挑战。借鉴ITSS标准,深入分析智... 当前数字技术与教学环境深度融合的智慧教学空间极大支持了教学新模式的开展,但存在教学空间内设备和系统复杂且运维工作量逐年增加,以及运维服务工作面临流程难追溯、资源易流失、技术不匹配等诸多问题挑战。借鉴ITSS标准,深入分析智慧教学空间运维工作相关要素,针对院校现状及存在问题,以提升管理效率和服务质量为目标,提出构建适合院校智慧教学空间运维实际的高效运维体系。 展开更多
关键词 智慧教学空间 运维体系 itsS 智慧运维
下载PDF
YOLO and Blockchain Technology Applied to Intelligent Transportation License Plate Character Recognition for Security 被引量:2
9
作者 Fares Alharbi Reem Alshahrani +2 位作者 Mohammed Zakariah Amjad Aldweesh Abdulrahman Abdullah Alghamdi 《Computers, Materials & Continua》 SCIE EI 2023年第12期3697-3722,共26页
Privacy and trust are significant issues in intelligent transportation systems(ITS).Data security is critical in ITS systems since sensitive user data is communicated to another user over the internet through wireless... Privacy and trust are significant issues in intelligent transportation systems(ITS).Data security is critical in ITS systems since sensitive user data is communicated to another user over the internet through wireless devices and routes such as radio channels,optical fiber,and blockchain technology.The Internet of Things(IoT)is a network of connected,interconnected gadgets.Privacy issues occasionally arise due to the amount of data generated.However,they have been primarily addressed by blockchain and smart contract technology.While there are still security issues with smart contracts,primarily due to the complexity of writing the code,there are still many challenges to consider when designing blockchain designs for the IoT environment.This study uses traditional blockchain technology with the“You Only Look Once”(YOLO)object detection method to accurately locate and identify license plates.While YOLO and blockchain technologies used for intelligent vehicle license plate recognition are promising,they have received limited research attention.Real-time object identification and recognition would be possible by combining a cutting-edge object detection technique with a regional convolutional neural network(RCNN)built with the tensor flow core open source libraries.This method works reasonably well for identifying any license plate.The Automatic License Plate Recognition(ALPR)approach delivered outstanding results in various datasets.First,with a recognition rate of 96.2%,our system(UFPR-ALPR)surpassed the previously used technology,consisting of 4500 frames and around 150 films.Second,a deep learning algorithm was trained to recognize images of license plate numbers using the UFPR-ALPR dataset.Third,the license plate’s characters were complicated for standard methods to identify because of the shifting lighting correctly.The proposed model,however,produced beneficial outcomes. 展开更多
关键词 intelligent transportation system blockchain technology license plate recognition PRIVACY YOLO deep learning technique ALPR
下载PDF
Whale Optimization Algorithm-Based Deep Learning Model for Driver Identification in Intelligent Transport Systems 被引量:1
10
作者 Yuzhou Li Chuanxia Sun Yinglei Hu 《Computers, Materials & Continua》 SCIE EI 2023年第5期3497-3515,共19页
Driver identification in intelligent transport systems has immense demand,considering the safety and convenience of traveling in a vehicle.The rapid growth of driver assistance systems(DAS)and driver identification sy... Driver identification in intelligent transport systems has immense demand,considering the safety and convenience of traveling in a vehicle.The rapid growth of driver assistance systems(DAS)and driver identification system propels the need for understanding the root causes of automobile accidents.Also,in the case of insurance,it is necessary to track the number of drivers who commonly drive a car in terms of insurance pricing.It is observed that drivers with frequent records of paying“fines”are compelled to pay higher insurance payments than drivers without any penalty records.Thus driver identification act as an important information source for the intelligent transport system.This study focuses on a similar objective to implement a machine learning-based approach for driver identification.Raw data is collected from in-vehicle sensors using the controller area network(CAN)and then converted to binary form using a one-hot encoding technique.Then,the transformed data is dimensionally reduced using the Principal Component Analysis(PCA)technique,and further optimal parameters from the dataset are selected using Whale Optimization Algorithm(WOA).The most relevant features are selected and then fed into a Convolutional Neural Network(CNN)model.The proposed model is evaluated against four different use cases of driver behavior.The results show that the best prediction accuracy is achieved in the case of drivers without glasses.The proposed model yielded optimal accuracy when evaluated against the K-Nearest Neighbors(KNN)and Support Vector Machines(SVM)models with and without using dimensionality reduction approaches. 展开更多
关键词 Driver identification intelligent transport system PCA WOA CNN
下载PDF
Internet of Things Based Solutions for Transport Network Vulnerability Assessment in Intelligent Transportation Systems 被引量:1
11
作者 Weiwei Liu Yang Tang +3 位作者 Fei Yang Chennan Zhang Dun Cao Gwang-jun Kim 《Computers, Materials & Continua》 SCIE EI 2020年第12期2511-2527,共17页
Intelligent Transportation System(ITS)is essential for effective identification of vulnerable units in the transport network and its stable operation.Also,it is necessary to establish an urban transport network vulner... Intelligent Transportation System(ITS)is essential for effective identification of vulnerable units in the transport network and its stable operation.Also,it is necessary to establish an urban transport network vulnerability assessment model with solutions based on Internet of Things(IoT).Previous research on vulnerability has no congestion effect on the peak time of urban road network.The cascading failure of links or nodes is presented by IoT monitoring system,which can collect data from a wireless sensor network in the transport environment.The IoT monitoring system collects wireless data via Vehicle-to-Infrastructure(V2I)channels to simulate key segments and their failure probability.Finally,the topological structure vulnerability index and the traffic function vulnerability index of road network are extracted from the vulnerability factors.The two indices are standardized by calculating the relative change rate,and the comprehensive index of the consequence after road network unit is in a failure state.Therefore,by calculating the failure probability of road network unit and comprehensive index of road network unit in failure state,the comprehensive vulnerability of road network can be evaluated by a risk calculation formula.In short,the IoT-based solutions to the new vulnerability assessment can help road network planning and traffic management departments to achieve the ITS goals. 展开更多
关键词 Internet of Things intelligent Transport systems vulnerability assessment transport network
下载PDF
Authentication of Vehicles and Road Side Units in Intelligent Transportation System 被引量:3
12
作者 Muhammad Waqas Shanshan Tu +5 位作者 Sadaqat Ur Rehman Zahid Halim Sajid Anwar Ghulam Abbas Ziaul Haq Abbas Obaid Ur Rehman 《Computers, Materials & Continua》 SCIE EI 2020年第7期359-371,共13页
Security threats to smart and autonomous vehicles cause potential consequences such as traffic accidents,economically damaging traffic jams,hijacking,motivating to wrong routes,and financial losses for businesses and ... Security threats to smart and autonomous vehicles cause potential consequences such as traffic accidents,economically damaging traffic jams,hijacking,motivating to wrong routes,and financial losses for businesses and governments.Smart and autonomous vehicles are connected wirelessly,which are more attracted for attackers due to the open nature of wireless communication.One of the problems is the rogue attack,in which the attacker pretends to be a legitimate user or access point by utilizing fake identity.To figure out the problem of a rogue attack,we propose a reinforcement learning algorithm to identify rogue nodes by exploiting the channel state information of the communication link.We consider the communication link between vehicle-to-vehicle,and vehicle-to-infrastructure.We evaluate the performance of our proposed technique by measuring the rogue attack probability,false alarm rate(FAR),mis-detection rate(MDR),and utility function of a receiver based on the test threshold values of reinforcement learning algorithm.The results show that the FAR and MDR are decreased significantly by selecting an appropriate threshold value in order to improve the receiver’s utility. 展开更多
关键词 intelligent transportation system AUTHENTICATION rogue attack
下载PDF
Research on Intelligent Transportation System and Its Key Technology based on IOT 被引量:1
13
作者 Xinghua HUANG 《International Journal of Technology Management》 2015年第5期22-24,共3页
This paper presents a design scheme of intelligent transportation system based on the Internet of things. First, the paper elaborated the related technical and functional demand of intelligent traffic system, designed... This paper presents a design scheme of intelligent transportation system based on the Internet of things. First, the paper elaborated the related technical and functional demand of intelligent traffic system, designed the gateway level model and the overall project. Then, we design gateway hardware circuit according to the overall plan, and design the gateway application software according to the functional requirements. Through the experiment and simulation results show that, the intelligent transportation system gateway based on Internet of things is ability to create ZigBee network through the way of wireless access, GPRS network, Ethernet access based on the wired way, to realizes multimode access, multi-protocol conversion gateway, ad hoc network functions. 展开更多
关键词 Intemet of Things intelligent transportation System ZIGBEE GPRS INTEMET
下载PDF
Systems Theory-Driven Framework for AI Integration into the Holistic Material Basis Research of Traditional Chinese Medicine
14
作者 Jingqi Zeng Xiaobin Jia 《Engineering》 SCIE EI CAS CSCD 2024年第9期28-50,共23页
This paper introduces a systems theory-driven framework to integration artificial intelligence(AI)into traditional Chinese medicine(TCM)research,enhancing the understanding of TCM’s holistic material basis while adhe... This paper introduces a systems theory-driven framework to integration artificial intelligence(AI)into traditional Chinese medicine(TCM)research,enhancing the understanding of TCM’s holistic material basis while adhering to evidence-based principles.Utilizing the System Function Decoding Model(SFDM),the research progresses through define,quantify,infer,and validate phases to systematically explore TCM’s material basis.It employs a dual analytical approach that combines top-down,systems theory-guided perspectives with bottom-up,elements-structure-function methodologies,provides comprehensive insights into TCM’s holistic material basis.Moreover,the research examines AI’s role in quantitative assessment and predictive analysis of TCM’s material components,proposing two specific AIdriven technical applications.This interdisciplinary effort underscores AI’s potential to enhance our understanding of TCM’s holistic material basis and establishes a foundation for future research at the intersection of traditional wisdom and modern technology. 展开更多
关键词 Artificial intelligence systems theory Traditional Chinese medicine Material basis BOTTOM-UP
下载PDF
AI-Driven Learning Management Systems:Modern Developments, Challenges and Future Trends during theAge of ChatGPT
15
作者 Sameer Qazi Muhammad Bilal Kadri +4 位作者 Muhammad Naveed Bilal AKhawaja Sohaib Zia Khan Muhammad Mansoor Alam Mazliham Mohd Su’ud 《Computers, Materials & Continua》 SCIE EI 2024年第8期3289-3314,共26页
COVID-19 pandemic restrictions limited all social activities to curtail the spread of the virus.The foremost and most prime sector among those affected were schools,colleges,and universities.The education system of en... COVID-19 pandemic restrictions limited all social activities to curtail the spread of the virus.The foremost and most prime sector among those affected were schools,colleges,and universities.The education system of entire nations had shifted to online education during this time.Many shortcomings of Learning Management Systems(LMSs)were detected to support education in an online mode that spawned the research in Artificial Intelligence(AI)based tools that are being developed by the research community to improve the effectiveness of LMSs.This paper presents a detailed survey of the different enhancements to LMSs,which are led by key advances in the area of AI to enhance the real-time and non-real-time user experience.The AI-based enhancements proposed to the LMSs start from the Application layer and Presentation layer in the form of flipped classroom models for the efficient learning environment and appropriately designed UI/UX for efficient utilization of LMS utilities and resources,including AI-based chatbots.Session layer enhancements are also required,such as AI-based online proctoring and user authentication using Biometrics.These extend to the Transport layer to support real-time and rate adaptive encrypted video transmission for user security/privacy and satisfactory working of AI-algorithms.It also needs the support of the Networking layer for IP-based geolocation features,the Virtual Private Network(VPN)feature,and the support of Software-Defined Networks(SDN)for optimum Quality of Service(QoS).Finally,in addition to these,non-real-time user experience is enhanced by other AI-based enhancements such as Plagiarism detection algorithms and Data Analytics. 展开更多
关键词 Learning management systems chatbots ChatGPT online education Internet of Things(IoT) artificial intelligence(AI) convolutional neural networks natural language processing
下载PDF
A Review on Mobile and Sensor Networks Innovations in Intelligent Transportation Systems
16
作者 Emad Felemban Adil A. Sheikh 《Journal of Transportation Technologies》 2014年第3期196-204,共9页
Rapid developments of mobile technologies, data acquisition and big data analytics, and their integration with critical application domains such as transportation systems have the potential to produce more efficient, ... Rapid developments of mobile technologies, data acquisition and big data analytics, and their integration with critical application domains such as transportation systems have the potential to produce more efficient, real-time, intelligent and safe transportation infrastructure. To increase the quality of transportation services, wireless sensor networks, mobile phones, crowd sourcing, RFID and Bluetooth technologies are being used. We surveyed innovations that were transformed from ideas in research labs into commercial systems in practical use. In this paper, we present some innovative mobile technologies, services and platforms that are being used in modern transportation applications including traffic data acquisition, traffic management and control, route optimizations, infrastructure redesign, road safety and enhancing user experience. 展开更多
关键词 intelligent transportation systems MOBILE INNOVATION WIRELESS Sensor Networks
下载PDF
Providing Performance Evaluation Indicators for Intelligent Transportation Systems (The Case Study of Tehran-Karaj Freeway Located in Iran)
17
作者 Arshia Taimouri Korosh Emamisaleh 《Journal of Transportation Technologies》 2020年第2期144-153,共10页
Intelligent Transportation Systems (ITS) play a fundamental role in reducing traffic congestion and increasing safety during daily transportation. These systems can also be useful in improving social welfare leading t... Intelligent Transportation Systems (ITS) play a fundamental role in reducing traffic congestion and increasing safety during daily transportation. These systems can also be useful in improving social welfare leading to general satisfaction. Proper performance evaluation can be efficient in improving the performance of these systems, and providing a scientific assessment index system can assist decision-makers in smart communities to plan for the development of ITS. However, the evaluation of these systems requires identifying appropriate indicators of performance evaluation that are consistent with the views of the beneficiaries of these systems. In this paper, performance evaluation indicators of ITS have been identified, and three indicators entitled “environmental and safety”, “assistance in reducing traffic congestion” and “attractive public transport” are presented to evaluate the performance of these systems. Moreover, the intelligent transport systems of the Tehran-Karaj Freeway in Iran are studied, and inferential statistical methods are employed to test the research hypotheses. It is worth noticing that in this study, a one-sample T-test method is used for hypotheses assessment and the SPSS software was used to analyze the findings. Also, the results demonstrated that the performance of ITS in the Tehran-Karaj Freeway regarding the indicators, such as “Declaration of route blocking information due to maintenance or reconstruction” and “Declaration of path geometry conditions” has not been acceptable. 展开更多
关键词 Performance EVALUATION intelligent transportation systems EVALUATION INDICATORS
下载PDF
Energy-efficient joint UAV secure communication and 3D trajectory optimization assisted by reconfigurable intelligent surfaces in the presence of eavesdroppers
18
作者 Huang Hailong Mohsen Eskandari +1 位作者 Andrey V.Savkin Wei Ni 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期537-543,共7页
We consider a scenario where an unmanned aerial vehicle(UAV),a typical unmanned aerial system(UAS),transmits confidential data to a moving ground target in the presence of multiple eavesdroppers.Multiple friendly reco... We consider a scenario where an unmanned aerial vehicle(UAV),a typical unmanned aerial system(UAS),transmits confidential data to a moving ground target in the presence of multiple eavesdroppers.Multiple friendly reconfigurable intelligent surfaces(RISs) help to secure the UAV-target communication and improve the energy efficiency of the UAV.We formulate an optimization problem to minimize the energy consumption of the UAV,subject to the mobility constraint of the UAV and that the achievable secrecy rate at the target is over a given threshold.We present an online planning method following the framework of model predictive control(MPC) to jointly optimize the motion of the UAV and the configurations of the RISs.The effectiveness of the proposed method is validated via computer simulations. 展开更多
关键词 Unmanned aerial systems(UASs) Unmanned aerial vehicle(UAV) Communication security Eaves-dropping Reconfigurable intelligent surfaces(RIS) Autonomous navigation and placement Path planning Model predictive control
下载PDF
Design and Implementation of an Intelligent Monitoring and Early Warning System for Kitchen Garbage Treatment
19
作者 Dexian HUANG Binjun GAN 《Meteorological and Environmental Research》 2024年第3期68-71,共4页
With a population of 1.4 billion in China and a huge daily output of kitchen waste,intelligent treatment of kitchen waste is imperative.This article elaborates on the design and implementation of an intelligent monito... With a population of 1.4 billion in China and a huge daily output of kitchen waste,intelligent treatment of kitchen waste is imperative.This article elaborates on the design and implementation of an intelligent monitoring and early warning system from five aspects:system architecture design,hardware equipment selection and configuration,data collection and processing flow,early warning algorithm and model development,and system integration and testing verification.It also points out the advantages of the intelligent monitoring and early warning system in kitchen waste treatment. 展开更多
关键词 Environmental sanitation Ecological environment Garbage disposal intelligent systems
下载PDF
Intelligent Framework for Secure Transportation Systems Using Software-Defined-Internet of Vehicles
20
作者 Mohana Priya Pitchai Manikandan Ramachandran +1 位作者 Fadi Al-Turjman Leonardo Mostarda 《Computers, Materials & Continua》 SCIE EI 2021年第9期3947-3966,共20页
The Internet of Things plays a predominant role in automating all real-time applications.One such application is the Internet of Vehicles which monitors the roadside traffic for automating traffic rules.As vehicles ar... The Internet of Things plays a predominant role in automating all real-time applications.One such application is the Internet of Vehicles which monitors the roadside traffic for automating traffic rules.As vehicles are connected to the internet through wireless communication technologies,the Internet of Vehicles network infrastructure is susceptible to flooding attacks.Reconfiguring the network infrastructure is difficult as network customization is not possible.As Software Defined Network provide a flexible programming environment for network customization,detecting flooding attacks on the Internet of Vehicles is integrated on top of it.The basic methodology used is crypto-fuzzy rules,in which cryptographic standard is incorporated in the traditional fuzzy rules.In this research work,an intelligent framework for secure transportation is proposed with the basic ideas of security attacks on the Internet of Vehicles integrated with software-defined networking.The intelligent framework is proposed to apply for the smart city application.The proposed cognitive framework is integrated with traditional fuzzy,cryptofuzzy and Restricted Boltzmann Machine algorithm to detect malicious traffic flows in Software-Defined-Internet of Vehicles.It is inferred from the result interpretations that an intelligent framework for secure transportation system achieves better attack detection accuracy with less delay and also prevents buffer overflow attacks.The proposed intelligent framework for secure transportation system is not compared with existing methods;instead,it is tested with crypto and machine learning algorithms. 展开更多
关键词 Internet of things smart cities software-defined network intelligent transportation system fuzzy inference system
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部