To effectively solve the problems of inconsistent communication protocols in automatic monitoring equipment,and limited data acquisition transmission and monitoring equipment,this paper developed programmable single p...To effectively solve the problems of inconsistent communication protocols in automatic monitoring equipment,and limited data acquisition transmission and monitoring equipment,this paper developed programmable single point multiple output intelligent data acquisition and transmission system. It made an in-depth elaboration of the data acquisition and transmission system from hardware design,software architecture and principle,main functions and technical parameters. Finally,it came up with four innovation points:(i) intelligent(automatic)matching a variety of communication protocols for environmental monitoring equipment,(ii) realizing multi-protocol and multi-target parallel data transmission,(iii) realizing remote dynamic input of control instructions through wired or wireless network,and(iv) supporting configuration(process) simulation of field equipment DCS operating conditions.展开更多
The generation method of three-dimensional fractal discrete fracture network(FDFN)based on multiplicative cascade process was developed.The complex multi-scale fracture system in shale after fracturing was characteriz...The generation method of three-dimensional fractal discrete fracture network(FDFN)based on multiplicative cascade process was developed.The complex multi-scale fracture system in shale after fracturing was characterized by coupling the artificial fracture model and the natural fracture model.Based on an assisted history matching(AHM)using multiple-proxy-based Markov chain Monte Carlo algorithm(MCMC),an embedded discrete fracture modeling(EDFM)incorporated with reservoir simulator was used to predict productivity of shale gas well.When using the natural fracture generation method,the distribution of natural fracture network can be controlled by fractal parameters,and the natural fracture network generated coupling with artificial fractures can characterize the complex system of different-scale fractures in shale after fracturing.The EDFM,with fewer grids and less computation time consumption,can characterize the attributes of natural fractures and artificial fractures flexibly,and simulate the details of mass transfer between matrix cells and fractures while reducing computation significantly.The combination of AMH and EDFM can lower the uncertainty of reservoir and fracture parameters,and realize effective inversion of key reservoir and fracture parameters and the productivity forecast of shale gas wells.Application demonstrates the results from the proposed productivity prediction model integrating FDFN,EDFM and AHM have high credibility.展开更多
文摘To effectively solve the problems of inconsistent communication protocols in automatic monitoring equipment,and limited data acquisition transmission and monitoring equipment,this paper developed programmable single point multiple output intelligent data acquisition and transmission system. It made an in-depth elaboration of the data acquisition and transmission system from hardware design,software architecture and principle,main functions and technical parameters. Finally,it came up with four innovation points:(i) intelligent(automatic)matching a variety of communication protocols for environmental monitoring equipment,(ii) realizing multi-protocol and multi-target parallel data transmission,(iii) realizing remote dynamic input of control instructions through wired or wireless network,and(iv) supporting configuration(process) simulation of field equipment DCS operating conditions.
基金Supported by the National Science and Technology Major Project(2017ZX05063-005)Science and Technology Development Project of PetroChina Research Institute of Petroleum Exploration and Development(YGJ2019-12-04)。
文摘The generation method of three-dimensional fractal discrete fracture network(FDFN)based on multiplicative cascade process was developed.The complex multi-scale fracture system in shale after fracturing was characterized by coupling the artificial fracture model and the natural fracture model.Based on an assisted history matching(AHM)using multiple-proxy-based Markov chain Monte Carlo algorithm(MCMC),an embedded discrete fracture modeling(EDFM)incorporated with reservoir simulator was used to predict productivity of shale gas well.When using the natural fracture generation method,the distribution of natural fracture network can be controlled by fractal parameters,and the natural fracture network generated coupling with artificial fractures can characterize the complex system of different-scale fractures in shale after fracturing.The EDFM,with fewer grids and less computation time consumption,can characterize the attributes of natural fractures and artificial fractures flexibly,and simulate the details of mass transfer between matrix cells and fractures while reducing computation significantly.The combination of AMH and EDFM can lower the uncertainty of reservoir and fracture parameters,and realize effective inversion of key reservoir and fracture parameters and the productivity forecast of shale gas wells.Application demonstrates the results from the proposed productivity prediction model integrating FDFN,EDFM and AHM have high credibility.