Recently, intelligent or smart materials and structures have been received more and more attention due to their distinguished multi-field coupling properties and wide applications in aerospace, automobiles, civil stru...Recently, intelligent or smart materials and structures have been received more and more attention due to their distinguished multi-field coupling properties and wide applications in aerospace, automobiles, civil structures, medical devices, information storage, energy harvesting and so on. It is of academic challenge to fully understand the complex multi-field coupling behaviors of various smart materials and structures, and of engineering sig- nificance to enhance the performance and reliability of these materials and structures in industrial applications. The papers in the special topic of Mechanics of Intelligent Materials and Structures focus on the understanding of the electromechanical, magneto-elastic, and magneto-rheological coupling behav- iors and properties of smart materials and structures for applications in vibration control, resonators, and various functional devices.展开更多
文摘Recently, intelligent or smart materials and structures have been received more and more attention due to their distinguished multi-field coupling properties and wide applications in aerospace, automobiles, civil structures, medical devices, information storage, energy harvesting and so on. It is of academic challenge to fully understand the complex multi-field coupling behaviors of various smart materials and structures, and of engineering sig- nificance to enhance the performance and reliability of these materials and structures in industrial applications. The papers in the special topic of Mechanics of Intelligent Materials and Structures focus on the understanding of the electromechanical, magneto-elastic, and magneto-rheological coupling behav- iors and properties of smart materials and structures for applications in vibration control, resonators, and various functional devices.