Injection molding is one of the most widely used material processing methods in producing plastic products with complex geometries and high precision. The determination of process parameters is important in obtaining ...Injection molding is one of the most widely used material processing methods in producing plastic products with complex geometries and high precision. The determination of process parameters is important in obtaining qualified products and maintaining product quality. This article reviews the recent studies and developments of the intelligent methods applied in the process parameter determination of injection molding. These intelligent methods are classified into three categories: Case-based reasoning methods, expert sys- tem-based methods, and data fitting and optimization methods. A framework of process parameter determination is proposed after comprehensive discussions. Finally, the conclusions and future research topics are discussed.展开更多
Metalenses have gained significant attention and have been widely utilized in optical systems for focusing and imaging,owing to their lightweight,high-integration,and exceptional-flexibility capabilities.Traditional d...Metalenses have gained significant attention and have been widely utilized in optical systems for focusing and imaging,owing to their lightweight,high-integration,and exceptional-flexibility capabilities.Traditional design methods neglect the coupling effect between adjacent meta-atoms,thus harming the practical performance of meta-devices.The existing physical/data-driven optimization algorithms can solve the above problems,but bring significant time costs or require a large number of data-sets.Here,we propose a physics-data-driven method employing an“intelligent optimizer”that enables us to adaptively modify the sizes of the meta-atom according to the sizes of its surrounding ones.The implementation of such a scheme effectively mitigates the undesired impact of local lattice coupling,and the proposed network model works well on thousands of data-sets with a validation loss of 3×10^(−3).Based on the“intelligent optimizer”,a 1-cm-diameter metalens is designed within 3 hours,and the experimental results show that the 1-mm-diameter metalens has a relative focusing efficiency of 93.4%(compared to the ideal focusing efficiency)and a Strehl ratio of 0.94.Compared to previous inverse design method,our method significantly boosts designing efficiency with five orders of magnitude reduction in time.More generally,it may set a new paradigm for devising large-aperture meta-devices.展开更多
In certain environments and under some conditions, the video images taken by the intelligent mobile video phones seem dark, and the colors are not bright or saturated enough.This paper presents an adaptive method to e...In certain environments and under some conditions, the video images taken by the intelligent mobile video phones seem dark, and the colors are not bright or saturated enough.This paper presents an adaptive method to enhance the video image brightness visualization and the color performance depending on the certain hardware property and function parameters. The experimental results prove that this method can enhance the colors and the contrast of the video images, based on the estimated quality feature values of each frame, without using the extra Digital Signal Processor (DSP).展开更多
Landslide displacement prediction can enhance the efficacy of landslide monitoring system,and the prediction of the periodic displacement is particularly challenging.In the previous studies,static regression models(e....Landslide displacement prediction can enhance the efficacy of landslide monitoring system,and the prediction of the periodic displacement is particularly challenging.In the previous studies,static regression models(e.g.,support vector machine(SVM))were mostly used for predicting the periodic displacement.These models may have bad performances,when the dynamic features of landslide triggers are incorporated.This paper proposes a method for predicting the landslide displacement in a dynamic manner,based on the gated recurrent unit(GRU)neural network and complete ensemble empirical decomposition with adaptive noise(CEEMDAN).The CEEMDAN is used to decompose the training data,and the GRU is subsequently used for predicting the periodic displacement.Implementation procedures of the proposed method were illustrated by a case study in the Caojiatuo landslide area,and SVM was also adopted for the periodic displacement prediction.This case study shows that the predictors obtained by SVM are inaccurate,as the landslide displacement is in a pronouncedly step-wise manner.By contrast,the accuracy can be significantly improved using the dynamic predictive method.This paper reveals the significance of capturing the dynamic features of the inputs in the training process,when the machine learning models are adopted to predict the landslide displacement.展开更多
Fault diagnosis plays a significant role in conducting condition-based maintenance and health management for gas turbines(GTs) to improve reliability and reduce costs. Various diagnosis methods developed by modeling e...Fault diagnosis plays a significant role in conducting condition-based maintenance and health management for gas turbines(GTs) to improve reliability and reduce costs. Various diagnosis methods developed by modeling engine systems or certain components implement faults detection and diagnosis based on the measurement of systemic parameters deviations. However, these conventional model-based methods are hindered by limitations of inability to handle the nonlinear nature, measurement uncertainty, fault coupling and other implementing problems. Recently, the development of artificial intelligence algorithms has provided an effective solution to the above problems, triggering broad researches for data-driven fault diagnosis methods with better accuracy,dynamic performance, and universality. This paper presents a systematic review of recently proposed intelligent fault diagnosis methods for GT engines, according to the classification of shallow learning methods, deep learning methods and hybrid intelligent methods. Moreover, the principle of typical algorithms, the evolution of enhanced methods, and the assessment of pros and cons are summarized to conclude the present status and look forward to the future in the field of GT fault diagnosis. Possible directions for development in method validation, information fusion, and interpretability of intelligent diagnosis methods are concluded in the end to provide insightful concepts for scholars in related fields.展开更多
The performance of cutting machines in terms of energy consumption and vibration directly affects the production costs. In this work, our aim was to evaluate the performance of cutting machines using hybrid intelligen...The performance of cutting machines in terms of energy consumption and vibration directly affects the production costs. In this work, our aim was to evaluate the performance of cutting machines using hybrid intelligent models. For this purpose, a systematic experimental work was performed. A database of the carbonate and granite rocks was established, in which the physical and mechanical properties of these rocks (i.e., UCS, elastic modulus, Mohs hardness, and Schmiazek abrasivity factor) and the operational parameters (i.e., depth of cut and feed rate) were considered as the input parameters. The predictive models were developed incorporating a combination of the multi-layered perceptron artificial neural networks and genetic algorithm (GANN-BP) and the support vector regression method and Cuckoo optimization algorithm (COA-SVR). The results obtained indicated that the performance of the developed GANN-BP and COA-SVR models was close to each other and that these models had good agreements with the measured values. These results also showed that these proposed models were suitable tools in evaluating the performance of cutting machines.展开更多
基金The authors would like to acknowledge the financial support from the National Natural Science Foundation of China (Grant Nos. 51675199 and 51635006) and the National Program on Key Basic Research Project (Grant No. 2013CB035805).
文摘Injection molding is one of the most widely used material processing methods in producing plastic products with complex geometries and high precision. The determination of process parameters is important in obtaining qualified products and maintaining product quality. This article reviews the recent studies and developments of the intelligent methods applied in the process parameter determination of injection molding. These intelligent methods are classified into three categories: Case-based reasoning methods, expert sys- tem-based methods, and data fitting and optimization methods. A framework of process parameter determination is proposed after comprehensive discussions. Finally, the conclusions and future research topics are discussed.
基金supported by the National Key Research and Development Program (2021YFA1401000)the National Natural Science Foundation of China (No.61975210,62175242 and 62305345)Sichuan Science and Technology Program (2020YFJ0001).
文摘Metalenses have gained significant attention and have been widely utilized in optical systems for focusing and imaging,owing to their lightweight,high-integration,and exceptional-flexibility capabilities.Traditional design methods neglect the coupling effect between adjacent meta-atoms,thus harming the practical performance of meta-devices.The existing physical/data-driven optimization algorithms can solve the above problems,but bring significant time costs or require a large number of data-sets.Here,we propose a physics-data-driven method employing an“intelligent optimizer”that enables us to adaptively modify the sizes of the meta-atom according to the sizes of its surrounding ones.The implementation of such a scheme effectively mitigates the undesired impact of local lattice coupling,and the proposed network model works well on thousands of data-sets with a validation loss of 3×10^(−3).Based on the“intelligent optimizer”,a 1-cm-diameter metalens is designed within 3 hours,and the experimental results show that the 1-mm-diameter metalens has a relative focusing efficiency of 93.4%(compared to the ideal focusing efficiency)and a Strehl ratio of 0.94.Compared to previous inverse design method,our method significantly boosts designing efficiency with five orders of magnitude reduction in time.More generally,it may set a new paradigm for devising large-aperture meta-devices.
文摘In certain environments and under some conditions, the video images taken by the intelligent mobile video phones seem dark, and the colors are not bright or saturated enough.This paper presents an adaptive method to enhance the video image brightness visualization and the color performance depending on the certain hardware property and function parameters. The experimental results prove that this method can enhance the colors and the contrast of the video images, based on the estimated quality feature values of each frame, without using the extra Digital Signal Processor (DSP).
基金The authors appreciate the financial support provided by the Natural Science Foundation of China(No.41807294)This study was also financially supported by China Geological Survey Project(Nos.DD20190716 and 0001212020CC60002)。
文摘Landslide displacement prediction can enhance the efficacy of landslide monitoring system,and the prediction of the periodic displacement is particularly challenging.In the previous studies,static regression models(e.g.,support vector machine(SVM))were mostly used for predicting the periodic displacement.These models may have bad performances,when the dynamic features of landslide triggers are incorporated.This paper proposes a method for predicting the landslide displacement in a dynamic manner,based on the gated recurrent unit(GRU)neural network and complete ensemble empirical decomposition with adaptive noise(CEEMDAN).The CEEMDAN is used to decompose the training data,and the GRU is subsequently used for predicting the periodic displacement.Implementation procedures of the proposed method were illustrated by a case study in the Caojiatuo landslide area,and SVM was also adopted for the periodic displacement prediction.This case study shows that the predictors obtained by SVM are inaccurate,as the landslide displacement is in a pronouncedly step-wise manner.By contrast,the accuracy can be significantly improved using the dynamic predictive method.This paper reveals the significance of capturing the dynamic features of the inputs in the training process,when the machine learning models are adopted to predict the landslide displacement.
基金financially supported by the National Natural Science Foundation of China (No. 61890921, 61890923, and 52372371)the key projects of Aero Engine and Gas Turbine Basic Science Center (No. P2022-B-V-001-001 and P2022B-V-002-001)。
文摘Fault diagnosis plays a significant role in conducting condition-based maintenance and health management for gas turbines(GTs) to improve reliability and reduce costs. Various diagnosis methods developed by modeling engine systems or certain components implement faults detection and diagnosis based on the measurement of systemic parameters deviations. However, these conventional model-based methods are hindered by limitations of inability to handle the nonlinear nature, measurement uncertainty, fault coupling and other implementing problems. Recently, the development of artificial intelligence algorithms has provided an effective solution to the above problems, triggering broad researches for data-driven fault diagnosis methods with better accuracy,dynamic performance, and universality. This paper presents a systematic review of recently proposed intelligent fault diagnosis methods for GT engines, according to the classification of shallow learning methods, deep learning methods and hybrid intelligent methods. Moreover, the principle of typical algorithms, the evolution of enhanced methods, and the assessment of pros and cons are summarized to conclude the present status and look forward to the future in the field of GT fault diagnosis. Possible directions for development in method validation, information fusion, and interpretability of intelligent diagnosis methods are concluded in the end to provide insightful concepts for scholars in related fields.
基金Project(11039)supported by Shahrood University of Technology,Iran
文摘The performance of cutting machines in terms of energy consumption and vibration directly affects the production costs. In this work, our aim was to evaluate the performance of cutting machines using hybrid intelligent models. For this purpose, a systematic experimental work was performed. A database of the carbonate and granite rocks was established, in which the physical and mechanical properties of these rocks (i.e., UCS, elastic modulus, Mohs hardness, and Schmiazek abrasivity factor) and the operational parameters (i.e., depth of cut and feed rate) were considered as the input parameters. The predictive models were developed incorporating a combination of the multi-layered perceptron artificial neural networks and genetic algorithm (GANN-BP) and the support vector regression method and Cuckoo optimization algorithm (COA-SVR). The results obtained indicated that the performance of the developed GANN-BP and COA-SVR models was close to each other and that these models had good agreements with the measured values. These results also showed that these proposed models were suitable tools in evaluating the performance of cutting machines.