期刊文献+
共找到99篇文章
< 1 2 5 >
每页显示 20 50 100
AI-Based Intelligent Model to Predict Epidemics Using Machine Learning Technique
1
作者 Liaqat Ali Saif E.A.Alnawayseh +3 位作者 Mohammed Salahat Taher M.Ghazal Mohsen A.A.Tomh Beenu Mago 《Intelligent Automation & Soft Computing》 SCIE 2023年第4期1095-1104,共10页
The immediate international spread of severe acute respiratory syn-drome revealed the potential threat of infectious diseases in a closely integrated and interdependent world.When an outbreak occurs,each country must ... The immediate international spread of severe acute respiratory syn-drome revealed the potential threat of infectious diseases in a closely integrated and interdependent world.When an outbreak occurs,each country must have a well-coordinated and preventative plan to address the situation.Information and Communication Technologies have provided innovative approaches to dealing with numerous facets of daily living.Although intelligent devices and applica-tions have become a vital part of our everyday lives,smart gadgets have also led to several physical and psychological health problems in modern society.Here,we used an artificial intelligence AI-based system for disease prediction using an Artificial Neural Network(ANN).The ANN improved the regularization of the classification model,hence increasing its accuracy.The unconstrained opti-mization model reduced the classifier’s cost function to obtain the lowest possible cost.To verify the performance of the intelligent system,we compared the out-comes of the suggested scheme with the results of previously proposed models.The proposed intelligent system achieved an accuracy of 0.89,and the miss rate 0.11 was higher than in previously proposed models. 展开更多
关键词 intelligent model EPIDEMICS artificial intelligence machine learning techniques
下载PDF
Intelligent model of rehabilitation training program for stroke
2
作者 纪雯 王建辉 +1 位作者 方晓柯 顾树生 《Journal of Central South University》 SCIE EI CAS 2014年第2期629-635,共7页
In view of the uncertainty and complexity,the intelligent model of rehabilitation training program for stroke was proposed,combining with the case-based reasoning(CBR) and interval type-2 fuzzy reasoning(IT2FR).The mo... In view of the uncertainty and complexity,the intelligent model of rehabilitation training program for stroke was proposed,combining with the case-based reasoning(CBR) and interval type-2 fuzzy reasoning(IT2FR).The model consists of two parts:the setting model based on CBR and the feedback compensation model based on IT2FR.The former presets the value of rehabilitation training program,and the latter carries on the feedback compensation of the preset value.Experimental results show that the average percentage error of two rehabilitation training programs is 0.074%.The two programs are made by the intelligent model and rehabilitation physician.That is,the two different programs are nearly identical.It means that the intelligent model can make a rehabilitation training program effectively and improve the rehabilitation efficiency. 展开更多
关键词 intelligent model interval type-2 fuzzy reasoning case-based reasoning UNCERTAINTY rehabilitation training program STROKE
下载PDF
Key problems in validation of intelligent models
3
作者 刘飞 马萍 +1 位作者 杨明 王子才 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2009年第3期371-375,共5页
To provide a realistic simulation environment for users,intelligent models have become key components in military simulations. After the analysis of modeling nature of intelligent models,the validation criteria for de... To provide a realistic simulation environment for users,intelligent models have become key components in military simulations. After the analysis of modeling nature of intelligent models,the validation criteria for defining the validation points and validation metrics for measuring the agreements between human experts and intelligent models were presented. Further,such methods as graphical comparison,feature analysis and face validation were discussed according to the characteristics of intelligent models. Based on the validation criteria,validation metrics and validation methods,the intelligent models can be effectively validated,which has been proved in current developed intelligent models. 展开更多
关键词 intelligent models validation criteria validation metrics validation methods
下载PDF
The Extreme Machine Learning Actuarial Intelligent Agricultural Insurance Based Automated Underwriting Model
4
作者 Brighton Mahohoho 《Open Journal of Statistics》 2024年第5期598-633,共36页
The paper presents an innovative approach towards agricultural insurance underwriting and risk pricing through the development of an Extreme Machine Learning (ELM) Actuarial Intelligent Model. This model integrates di... The paper presents an innovative approach towards agricultural insurance underwriting and risk pricing through the development of an Extreme Machine Learning (ELM) Actuarial Intelligent Model. This model integrates diverse datasets, including climate change scenarios, crop types, farm sizes, and various risk factors, to automate underwriting decisions and estimate loss reserves in agricultural insurance. The study conducts extensive exploratory data analysis, model building, feature engineering, and validation to demonstrate the effectiveness of the proposed approach. Additionally, the paper discusses the application of robust tests, stress tests, and scenario tests to assess the model’s resilience and adaptability to changing market conditions. Overall, the research contributes to advancing actuarial science in agricultural insurance by leveraging advanced machine learning techniques for enhanced risk management and decision-making. 展开更多
关键词 Extreme Machine Learning Actuarial Underwriting Machine Learning intelligent model Agricultural Insurance
下载PDF
The Actuarial Data Intelligent Based Artificial Neural Network (ANN) Automobile Insurance Inflation Adjusted Frequency Severity Loss Reserving Model
5
作者 Brighton Mahohoho 《Open Journal of Statistics》 2024年第5期634-665,共32页
This study proposes a novel approach for estimating automobile insurance loss reserves utilizing Artificial Neural Network (ANN) techniques integrated with actuarial data intelligence. The model aims to address the ch... This study proposes a novel approach for estimating automobile insurance loss reserves utilizing Artificial Neural Network (ANN) techniques integrated with actuarial data intelligence. The model aims to address the challenges of accurately predicting insurance claim frequencies, severities, and overall loss reserves while accounting for inflation adjustments. Through comprehensive data analysis and model development, this research explores the effectiveness of ANN methodologies in capturing complex nonlinear relationships within insurance data. The study leverages a data set comprising automobile insurance policyholder information, claim history, and economic indicators to train and validate the ANN-based reserving model. Key aspects of the methodology include data preprocessing techniques such as one-hot encoding and scaling, followed by the construction of frequency, severity, and overall loss reserving models using ANN architectures. Moreover, the model incorporates inflation adjustment factors to ensure the accurate estimation of future loss reserves in real terms. Results from the study demonstrate the superior predictive performance of the ANN-based reserving model compared to traditional actuarial methods, with substantial improvements in accuracy and robustness. Furthermore, the model’s ability to adapt to changing market conditions and regulatory requirements, such as IFRS17, highlights its practical relevance in the insurance industry. The findings of this research contribute to the advancement of actuarial science and provide valuable insights for insurance companies seeking more accurate and efficient loss reserving techniques. The proposed ANN-based approach offers a promising avenue for enhancing risk management practices and optimizing financial decision-making processes in the automobile insurance sector. 展开更多
关键词 Artificial Neural Network Actuarial Loss Reserving Machine Learning intelligent model
下载PDF
A stochastic two-dimensional intelligent driver car-following model with vehicular dynamics
6
作者 祁宏生 应雨燕 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第4期430-442,共13页
The law of vehicle movement has long been studied under the umbrella of microscopic traffic flow models,especially the car-following(CF)models.These models of the movement of vehicles serve as the backbone of traffic ... The law of vehicle movement has long been studied under the umbrella of microscopic traffic flow models,especially the car-following(CF)models.These models of the movement of vehicles serve as the backbone of traffic flow analysis,simulation,autonomous vehicle development,etc.Two-dimensional(2D)vehicular movement is basically stochastic and is the result of interactions between a driver's behavior and a vehicle's characteristics.Current microscopic models either neglect 2D noise,or overlook vehicle dynamics.The modeling capabilities,thus,are limited,so that stochastic lateral movement cannot be reproduced.The present research extends an intelligent driver model(IDM)by explicitly considering both vehicle dynamics and 2D noises to formulate a stochastic 2D IDM model,with vehicle dynamics based on the stochastic differential equation(SDE)theory.Control inputs from the vehicle include the steer rate and longitudinal acceleration,both of which are developed based on an idea from a traditional intelligent driver model.The stochastic stability condition is analyzed on the basis of Lyapunov theory.Numerical analysis is used to assess the two cases:(i)when a vehicle accelerates from a standstill and(ii)when a platoon of vehicles follow a leader with a stop-and-go speed profile,the formation of congestion and subsequent dispersion are simulated.The results show that the model can reproduce the stochastic 2D trajectories of the vehicle and the marginal distribution of lateral movement.The proposed model can be used in both a simulation platform and a behavioral analysis of a human driver in traffic flow. 展开更多
关键词 intelligent model vehicular dynamics stochastic differential equation stochastic stability
下载PDF
An Intelligent Hazardous Waste Detection and Classification Model Using Ensemble Learning Techniques
7
作者 Mesfer Al Duhayyim Saud S.Alotaibi +5 位作者 Shaha Al-Otaibi Fahd N.Al-Wesabi Mahmoud Othman Ishfaq Yaseen Mohammed Rizwanullah Abdelwahed Motwakel 《Computers, Materials & Continua》 SCIE EI 2023年第2期3315-3332,共18页
Proper waste management models using recent technologies like computer vision,machine learning(ML),and deep learning(DL)are needed to effectively handle the massive quantity of increasing waste.Therefore,waste classif... Proper waste management models using recent technologies like computer vision,machine learning(ML),and deep learning(DL)are needed to effectively handle the massive quantity of increasing waste.Therefore,waste classification becomes a crucial topic which helps to categorize waste into hazardous or non-hazardous ones and thereby assist in the decision making of the waste management process.This study concentrates on the design of hazardous waste detection and classification using ensemble learning(HWDC-EL)technique to reduce toxicity and improve human health.The goal of the HWDC-EL technique is to detect the multiple classes of wastes,particularly hazardous and non-hazardous wastes.The HWDC-EL technique involves the ensemble of three feature extractors using Model Averaging technique namely discrete local binary patterns(DLBP),EfficientNet,and DenseNet121.In addition,the flower pollination algorithm(FPA)based hyperparameter optimizers are used to optimally adjust the parameters involved in the EfficientNet and DenseNet121 models.Moreover,a weighted voting-based ensemble classifier is derived using three machine learning algorithms namely support vector machine(SVM),extreme learning machine(ELM),and gradient boosting tree(GBT).The performance of the HWDC-EL technique is tested using a benchmark Garbage dataset and it obtains a maximum accuracy of 98.85%. 展开更多
关键词 Hazardous waste image classification ensemble learning deep learning intelligent models human health weighted voting model
下载PDF
Intelligent Student Mental Health Assessment Model on Learning Management System
8
作者 Nasser Ali Aljarallah Ashit Kumar Dutta +1 位作者 Majed Alsanea Abdul Rahaman Wahab Sait 《Computer Systems Science & Engineering》 SCIE EI 2023年第2期1853-1868,共16页
A learning management system(LMS)is a software or web based application,commonly utilized for planning,designing,and assessing a particular learning procedure.Generally,the LMS offers a method of creating and deliveri... A learning management system(LMS)is a software or web based application,commonly utilized for planning,designing,and assessing a particular learning procedure.Generally,the LMS offers a method of creating and delivering content to the instructor,monitoring students’involvement,and validating their outcomes.Since mental health issues become common among studies in higher education globally,it is needed to properly determine it to improve mental stabi-lity.This article develops a new seven spot lady bird feature selection with opti-mal sparse autoencoder(SSLBFS-OSAE)model to assess students’mental health on LMS.The major aim of the SSLBFS-OSAE model is to determine the proper health status of the students with respect to depression,anxiety,and stress(DAS).The SSLBFS-OSAE model involves a new SSLBFS model to elect a useful set of features.In addition,OSAE model is applied for the classification of mental health conditions and the performance can be improved by the use of cuckoo search optimization(CSO)based parameter tuning process.The design of CSO algorithm for optimally tuning the SAE parameters results in enhanced classifica-tion outcomes.For examining the improved classifier results of the SSLBFS-OSAE model,a comprehensive results analysis is done and the obtained values highlighted the supremacy of the SSLBFS model over its recent methods interms of different measures. 展开更多
关键词 Learning management system mental health assessment intelligent models machine learning feature selection performance assessment
下载PDF
Research on the intelligent internet nursing model based on the child respiratory and asthma control test scale for asthma management of preschool children
9
作者 Chuan-Feng Pei Li Zhang +2 位作者 Xi-Yan Xu Zhen Qin Hong-Mei Liang 《World Journal of Clinical Cases》 SCIE 2023年第28期6707-6714,共8页
BACKGROUND Childhood asthma is a common respiratory ailment that significantly affects preschool children.Effective asthma management in this population is particularly challenging due to limited communication skills ... BACKGROUND Childhood asthma is a common respiratory ailment that significantly affects preschool children.Effective asthma management in this population is particularly challenging due to limited communication skills in children and the necessity for consistent involvement of a caregiver.With the rise of digital healthcare and the need for innovative interventions,Internet-based models can potentially offer relatively more efficient and patient-tailored care,especially in children.AIM To explore the impact of an intelligent Internet care model based on the child respiratory and asthma control test(TRACK)on asthma management in preschool children.METHODS The study group comprised preschoolers,aged 5 years or younger,that visited the hospital's pediatric outpatient and emergency departments between January 2021 and January 2022.Total of 200 children were evenly and randomly divided into the observation and control groups.The control group received standard treatment in accordance with the 2016 Guidelines for Pediatric Bronchial Asthma and the Global Initiative on Asthma.In addition to above treatment,the observation group was introduced to an intelligent internet nursing model,emphasizing the TRACK scale.Key measures monitored over a six-month period included the frequency of asthma attack,emergency visits,pulmonary function parameters(FEV1,FEV1/FVC,and PEF),monthly TRACK scores,and the SF-12 quality of life assessment.Post-intervention asthma control rates were assessed at six-month follow-up.RESULTS The observation group had fewer asthma attacks and emergency room visits than the control group(P<0.05).After six months of treatment,the children in both groups had higher FEV1,FEV1/FVC,and PEF(P<0.05).Statistically significant differences were observed between the two groups(P<0.05).For six months,children in the observation group had a higher monthly TRACK score than those in the control group(P<0.05).The PCS and MCSSF-12 quality of life scores were relatively higher than those before the nursing period(P<0.05).Furthermore,the groups showed statistically significant differences(P<0.05).The asthma control rate was higher in the observation group than in the control group(P<0.05).CONCLUSION TRACK based Intelligent Internet nursing model may reduce asthma attacks and emergency visits in asthmatic children,improve lung function,quality of life,and the TRACK score and asthma control rate.The effect of nursing was significant,allowing for development of an asthma management model. 展开更多
关键词 Child respiratory and asthma control test scale intelligent internet nursing model PRESCHOOLERS Childhood asthma Administration Healthcare
下载PDF
Deep Learning Based Intelligent Industrial Fault Diagnosis Model 被引量:9
10
作者 R.Surendran Osamah Ibrahim Khalaf Carlos Andres Tavera Romero 《Computers, Materials & Continua》 SCIE EI 2022年第3期6323-6338,共16页
In the present industrial revolution era,the industrial mechanical system becomes incessantly highly intelligent and composite.So,it is necessary to develop data-driven and monitoring approaches for achieving quick,tr... In the present industrial revolution era,the industrial mechanical system becomes incessantly highly intelligent and composite.So,it is necessary to develop data-driven and monitoring approaches for achieving quick,trustable,and high-quality analysis in an automated way.Fault diagnosis is an essential process to verify the safety and reliability operations of rotating machinery.The advent of deep learning(DL)methods employed to diagnose faults in rotating machinery by extracting a set of feature vectors from the vibration signals.This paper presents an Intelligent Industrial Fault Diagnosis using Sailfish Optimized Inception with Residual Network(IIFD-SOIR)Model.The proposed model operates on three major processes namely signal representation,feature extraction,and classification.The proposed model uses a Continuous Wavelet Transform(CWT)is for preprocessed representation of the original vibration signal.In addition,Inception with ResNet v2 based feature extraction model is applied to generate high-level features.Besides,the parameter tuning of Inception with the ResNet v2 model is carried out using a sailfish optimizer.Finally,a multilayer perceptron(MLP)is applied as a classification technique to diagnose the faults proficiently.Extensive experimentation takes place to ensure the outcome of the presented model on the gearbox dataset and a motor bearing dataset.The experimental outcome indicated that the IIFD-SOIR model has reached a higher average accuracy of 99.6%and 99.64%on the applied gearbox dataset and bearing dataset.The simulation outcome ensured that the proposed model has attained maximum performance over the compared methods. 展开更多
关键词 intelligent models fault diagnosis industrial control deep learning feature extraction
下载PDF
Intelligent modeling and control for nonlinear systems with rate-dependent hysteresis 被引量:11
11
作者 MAO JianQin DING HaiShan 《Science in China(Series F)》 2009年第4期656-673,共18页
A new modeling approach for nonlinear systems with rate-dependent hysteresis is proposed. The approach is used for the modeling of the giant magnetostrictive actuator, which has the rate-dependent nonlinear property. ... A new modeling approach for nonlinear systems with rate-dependent hysteresis is proposed. The approach is used for the modeling of the giant magnetostrictive actuator, which has the rate-dependent nonlinear property. The models built are simpler than the existed approaches. Compared with the experiment result, the model built can well describe the hysteresis nonlinear of the actuator for input signals with complex frequency. An adaptive direct inverse control approach is proposed based on the fuzzy tree model and inverse learning and special learning that are used in neural network broadly. In this approach, the inverse model of the plant is identified to be the initial controller firstly. Then, the inverse model is connected with the plant in series and the linear parameters of the controller are adjusted using the least mean square algorithm by on-line manner. The direct inverse control approach based on the fuzzy tree model is applied on the tracing control of the actuator by simulation. The simulation results show the correctness of the approach. 展开更多
关键词 nonlinear systems with rate-dependent hysteresis intelligent modeling and control fuzzy tree model T-S fuzzy model adaptiveinverse control
原文传递
Intelligent Feature Selection with Deep Learning Based Financial Risk Assessment Model 被引量:1
12
作者 Thavavel Vaiyapuri K.Priyadarshini +4 位作者 A.Hemlathadhevi M.Dhamodaran Ashit Kumar Dutta Irina V.Pustokhina Denis A.Pustokhin 《Computers, Materials & Continua》 SCIE EI 2022年第8期2429-2444,共16页
Due to global financial crisis,risk management has received significant attention to avoid loss and maximize profit in any business.Since the financial crisis prediction(FCP)process is mainly based on data driven deci... Due to global financial crisis,risk management has received significant attention to avoid loss and maximize profit in any business.Since the financial crisis prediction(FCP)process is mainly based on data driven decision making and intelligent models,artificial intelligence(AI)and machine learning(ML)models are widely utilized.This article introduces an intelligent feature selection with deep learning based financial risk assessment model(IFSDL-FRA).The proposed IFSDL-FRA technique aims to determine the financial crisis of a company or enterprise.In addition,the IFSDL-FRA technique involves the design of new water strider optimization algorithm based feature selection(WSOA-FS)manner to an optimum selection of feature subsets.Moreover,Deep Random Vector Functional Link network(DRVFLN)classification technique was applied to properly allot the class labels to the financial data.Furthermore,improved fruit fly optimization algorithm(IFFOA)based hyperparameter tuning process is carried out to optimally tune the hyperparameters of the DRVFLN model.For enhancing the better performance of the IFSDL-FRA technique,an extensive set of simulations are implemented on benchmark financial datasets and the obtained outcomes determine the betterment of IFSDL-FRA technique on the recent state of art approaches. 展开更多
关键词 Financial risks intelligent models financial crisis prediction deep learning feature selection metaheuristics
下载PDF
Intelligent Disease Diagnosis Model for Energy Aware Cluster Based IoT Healthcare Systems
13
作者 Wafaa Alsaggaf Felwa Abukhodair +2 位作者 Amani Tariq Jamal Sayed Abdel-Khalek Romany F.Mansour 《Computers, Materials & Continua》 SCIE EI 2022年第4期1189-1203,共15页
In recent days,advancements in the Internet of Things(IoT)and cloud computing(CC)technologies have emerged in different application areas,particularly healthcare.The use of IoT devices in healthcare sector often gener... In recent days,advancements in the Internet of Things(IoT)and cloud computing(CC)technologies have emerged in different application areas,particularly healthcare.The use of IoT devices in healthcare sector often generates large amount of data and also spent maximum energy for data transmission to the cloud server.Therefore,energy efficient clustering mechanism is needed to effectively reduce the energy consumption of IoT devices.At the same time,the advent of deep learning(DL)models helps to analyze the healthcare data in the cloud server for decision making.With this motivation,this paper presents an intelligent disease diagnosis model for energy aware cluster based IoT healthcare systems,called IDDM-EAC technique.The proposed IDDM-EAC technique involves a 3-stage process namely data acquisition,clustering,and disease diagnosis.In addition,the IDDM-EAC technique derives a chicken swarm optimization based energy aware clustering(CSOEAC)technique to group the IoT devices into clusters and select cluster heads(CHs).Moreover,a new coyote optimization algorithm(COA)with deep belief network(DBN),called COA-DBN technique is employed for the disease diagnostic process.The COA-DBN technique involves the design of hyperparameter optimizer using COA to optimally adjust the parameters involved in the DBN model.In order to inspect the betterment of the IDDM-EAC technique,a wide range of experiments were carried out using real time data from IoT devices and benchmark data from UCI repository.The experimental results demonstrate the promising performance with the minimal total energy consumption of 63%whereas the EEPSOC,ABC,GWO,and ACO algorithms have showcased a higher total energy consumption of 69%,78%,83%,and 84%correspondingly. 展开更多
关键词 intelligent models healthcare systems disease diagnosis internet of things cloud computing CLUSTERING deep learning
下载PDF
Data-based intelligent modeling and control for nonlinear systems
14
作者 Chaoxu MU Changyin SUN 《Frontiers of Electrical and Electronic Engineering in China》 CSCD 2011年第2期291-299,共9页
With the ever increasing complexity of industrial systems,model-based control has encountered difficulties and is facing problems,while the interest in data-based control has been booming.This paper gives an overview ... With the ever increasing complexity of industrial systems,model-based control has encountered difficulties and is facing problems,while the interest in data-based control has been booming.This paper gives an overview of data-based control,which divides it into two subfields,intelligent modeling and direct controller design.In the two subfields,some important methods concerning data-based control are intensively investigated.Within the framework of data-based modeling,main modeling technologies and control strategies are discussed,and then fundamental concepts and various algorithms are presented for the design of a data-based controller.Finally,some remaining challenges are suggested. 展开更多
关键词 offline and online data intelligent modeling data-based control PERSPECTIVE
原文传递
Intelligent Aquila Optimization Algorithm-Based Node Localization Scheme for Wireless Sensor Networks
15
作者 Nidhi Agarwal M.Gokilavani +4 位作者 S.Nagarajan S.Saranya Hadeel Alsolai Sami Dhahbi Amira Sayed Abdelaziz 《Computers, Materials & Continua》 SCIE EI 2023年第1期141-152,共12页
In recent times,wireless sensor network(WSN)finds their suitability in several application areas,ranging from military to commercial ones.Since nodes in WSN are placed arbitrarily in the target field,node localization... In recent times,wireless sensor network(WSN)finds their suitability in several application areas,ranging from military to commercial ones.Since nodes in WSN are placed arbitrarily in the target field,node localization(NL)becomes essential where the positioning of the nodes can be determined by the aid of anchor nodes.The goal of any NL scheme is to improve the localization accuracy and reduce the localization error rate.With this motivation,this study focuses on the design of Intelligent Aquila Optimization Algorithm Based Node Localization Scheme(IAOAB-NLS)for WSN.The presented IAOAB-NLS model makes use of anchor nodes to determine proper positioning of the nodes.In addition,the IAOAB-NLS model is stimulated by the behaviour of Aquila.The IAOAB-NLS model has the ability to accomplish proper coordinate points of the nodes in the network.For guaranteeing the proficient NL process of the IAOAB-NLS model,widespread experimentation takes place to assure the betterment of the IAOAB-NLS model.The resultant values reported the effectual outcome of the IAOAB-NLS model irrespective of changing parameters in the network. 展开更多
关键词 Aquila optimizer node localization WSN intelligent models unknown nodes anchor nodes
下载PDF
Intelligent Deep Learning Enabled Wild Forest Fire Detection System
16
作者 Ahmed S.Almasoud 《Computer Systems Science & Engineering》 SCIE EI 2023年第2期1485-1498,共14页
The latest advancements in computer vision and deep learning(DL)techniques pave the way to design novel tools for the detection and monitoring of forestfires.In this view,this paper presents an intelligent wild forestfi... The latest advancements in computer vision and deep learning(DL)techniques pave the way to design novel tools for the detection and monitoring of forestfires.In this view,this paper presents an intelligent wild forestfire detec-tion and alarming system using deep learning(IWFFDA-DL)model.The pro-posed IWFFDA-DL technique aims to identify forestfires at earlier stages through integrated sensors.The proposed IWFFDA-DL system includes an Inte-grated sensor system(ISS)combining an array of sensors that acts as the major input source that helps to forecast thefire.Then,the attention based convolution neural network with bidirectional long short term memory(ACNN-BLSTM)model is applied to examine and identify the existence of danger.For hyperpara-meter tuning of the ACNN-BLSTM model,the bacterial foraging optimization(BFO)algorithm is employed and thereby enhances the detection performance.Finally,when thefire is detected,the Global System for Mobiles(GSM)modem transmits messages to the authorities to take required actions.An extensive set of simulations were performed and the results are investigated interms of several aspects.The obtained results highlight the betterment of the IWFFDA-DL techni-que interms of various measures. 展开更多
关键词 Forestfire deep learning intelligent models metaheuristics integrated sensor system hyperparameter tuning
下载PDF
Intelligent Cost Modeling Based on Soft Computing for Avionics Systems
17
作者 朱力立 李庄生 许宗泽 《Journal of Electronic Science and Technology of China》 2006年第2期136-143,共8页
In parametric cost estimating, objections to using statistical Cost Estimating Relationships (CERs) and parametric models include problems of low statistical significance due to limited data points, biases in the un... In parametric cost estimating, objections to using statistical Cost Estimating Relationships (CERs) and parametric models include problems of low statistical significance due to limited data points, biases in the underlying data, and lack of robustness. Soft Computing (SC) technologies are used for building intelligent cost models. The SC models are systemically evaluated based on their training and prediction of the historical cost data of airborne avionics systems. Results indicating the strengths and weakness of each model are presented. In general, the intelligent cost models have higher prediction precision, better data adaptability, and stronger self-learning capability than the regression CERs. 展开更多
关键词 avionics system Soft Computing (SC) parametric cost estimation intelligent model
下载PDF
Optimal Artificial Intelligence Based Automated Skin Lesion Detection and Classification Model
18
作者 Kingsley A.Ogudo R.Surendran Osamah Ibrahim Khalaf 《Computer Systems Science & Engineering》 SCIE EI 2023年第1期693-707,共15页
Skin lesions have become a critical illness worldwide,and the earlier identification of skin lesions using dermoscopic images can raise the survival rate.Classification of the skin lesion from those dermoscopic images... Skin lesions have become a critical illness worldwide,and the earlier identification of skin lesions using dermoscopic images can raise the survival rate.Classification of the skin lesion from those dermoscopic images will be a tedious task.The accuracy of the classification of skin lesions is improved by the use of deep learning models.Recently,convolutional neural networks(CNN)have been established in this domain,and their techniques are extremely established for feature extraction,leading to enhanced classification.With this motivation,this study focuses on the design of artificial intelligence(AI)based solutions,particularly deep learning(DL)algorithms,to distinguish malignant skin lesions from benign lesions in dermoscopic images.This study presents an automated skin lesion detection and classification technique utilizing optimized stacked sparse autoen-coder(OSSAE)based feature extractor with backpropagation neural network(BPNN),named the OSSAE-BPNN technique.The proposed technique contains a multi-level thresholding based segmentation technique for detecting the affected lesion region.In addition,the OSSAE based feature extractor and BPNN based classifier are employed for skin lesion diagnosis.Moreover,the parameter tuning of the SSAE model is carried out by the use of sea gull optimization(SGO)algo-rithm.To showcase the enhanced outcomes of the OSSAE-BPNN model,a comprehensive experimental analysis is performed on the benchmark dataset.The experimentalfindings demonstrated that the OSSAE-BPNN approach outper-formed other current strategies in terms of several assessment metrics. 展开更多
关键词 Deep learning dermoscopic images intelligent models machine learning skin lesion
下载PDF
Intelligent back-looking distance driver model and stability analysis for connected and automated vehicles 被引量:8
19
作者 YI Zi-wei LU Wen-qi +2 位作者 XU Ling-hui QU Xu RAN Bin 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第11期3499-3512,共14页
The connected and automated vehicles(CAVs)technologies provide more information to drivers in the car-following(CF)process.Unlike the human-driven vehicles(HVs),which only considers information in front,the CAVs circu... The connected and automated vehicles(CAVs)technologies provide more information to drivers in the car-following(CF)process.Unlike the human-driven vehicles(HVs),which only considers information in front,the CAVs circumstance allows them to obtain information in front and behind,enhancing vehicles perception ability.This paper proposes an intelligent back-looking distance driver model(IBDM)considering the desired distance of the following vehicle in homogeneous CAVs environment.Based on intelligent driver model(IDM),the IBDM integrates behind information of vehicles as a control term.The stability condition against a small perturbation is analyzed using linear stability theory in the homogeneous traffic flow.To validate the theoretical analysis,simulations are carried out on a single lane under the open boundary condition,and compared with the IDM not considering the following vehicle and the extended IDM considering the information of vehicle preceding and next preceding.Six scenarios are designed to evaluate the results under different disturbance strength,disturbance location,and initial platoon space distance.The results reveal that the IBDM has an advantage over IDM and the extended IDM in control of CAVs car-following process in maintaining string stability,and the stability improves by increasing the proportion of the new item. 展开更多
关键词 linear stability intelligent driver model connected and automated vehicles
下载PDF
An Intelligent Master Model of Computer Aided Process Planning for Large Complicated Stampings 被引量:3
20
作者 郑金桥 王义林 李志刚 《Journal of Southwest Jiaotong University(English Edition)》 2005年第2期103-112,共10页
Process planning for large complicated stampings is more complicated, illegible and multiform than that for common stampings. In this paper, an intelligent master model of computer aided process planning (CAPP) for ... Process planning for large complicated stampings is more complicated, illegible and multiform than that for common stampings. In this paper, an intelligent master model of computer aided process planning (CAPP) for large complicated stampings has been developed based on knowledge based engineering (KBE) and feature technology. This innovative model consists of knowledge base (KB), process control structure (PCS), process information model (PIM), multidisciplinary design optimization (MDO), model link environment (MLE) and simulation engine (SE), to realize process planning, optimization, simulation and management integrated to complete intelligent CAPP system. In this model, KBE provides knowledge base, open architecture and knowledge reuse ability to deal with the multi-domain and multi-expression of process knowledge, and forms an integrated environment. With PIM, all the knowledge consisting of objects, constraints, cxtmricncc and decision-makings is carried by object-oriented method dynamically for knowledge-reasoning. PCS makes dynamical knowledge modified and updated timely and accordingly. MLE provides scv. cral methods to make CAPP sysmm associated and integrated. SE provides a programmable mechanism to interpret simulation course and result. Meanwhile, collaborative optimization, one method of MDO, is imported to deal with the optimization distributed for multiple purposes. All these make CAPP sysmm integrated and open to other systems, such as dic design and manufacturing system. 展开更多
关键词 Large complicated stampings Process planning Knowledge-based engineering intelligent master model
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部