Resilient Packet Ring (RPR) is a Media Access Control (MAC) layer protocol that operates over a double counter-rotating ring network topology. RPR is designed to enhance Synchronous Digital Hierarchy(SDH) in order to ...Resilient Packet Ring (RPR) is a Media Access Control (MAC) layer protocol that operates over a double counter-rotating ring network topology. RPR is designed to enhance Synchronous Digital Hierarchy(SDH) in order to handle data traffic more efficiently. Since Intelligent Protection Switching(IPS) is one of the key technologies in ring networks, RPR provides two intelligent protection algorithms: steering and wrapping. While wrapping in RPR in essence inherits the automatic protection switching(APS) algorithm of SDH, it also wastes the bandwidth on the wrapping ringlets and may result in severe congestion. Whereas steering in RPR provides high bandwidth utilization, its switching speed is low, because it is indeed a high layer's restoration algorithm. In this paper, integrated self-healing(ISH) algorithm as an effective algorithm for RPR is proposed, which synthesizes the merits of the two algorithms by transporting healing signal and computing routing in MAC layer. At last, the performance of ISH algorithm is analyzed and simulated.展开更多
Visual object tracking plays an important role in intelligent aerial surveillance by unmanned aerial vehicles(UAV). In ordinary applications, aerial videos are captured by cameras with a fixed-focus lens or a zoom l...Visual object tracking plays an important role in intelligent aerial surveillance by unmanned aerial vehicles(UAV). In ordinary applications, aerial videos are captured by cameras with a fixed-focus lens or a zoom lens, for which the field-of-view(FOV)of the camera is fixed or smoothly changed. In this paper, a special application of the visual tracking in aerial videos captured by the dual FOV camera is introduced, which is different from ordinary applications since the camera quickly switches its FOV during the capturing. Firstly, the tracking process with the dual FOV camera is analyzed, and a conclusion is made that the critical part for the whole process depends on the accurate tracking of the target at the moment of FOV switching. Then, a cascade mean shift tracker is proposed to deal with the target tracking under FOV switching. The tracker utilizes kernels with multiple bandwidths to execute mean shift locating, which is able to deal with the abrupt motion of the target caused by FOV switching. The target is represented by the background weighted histogram to make it well distinguished from the background, and a modification is made to the weight value in the mean shift process to accelerate the convergence of the tracker. Experimental results show that our tracker presents a good performance on both accuracy and efficiency for the tracking. To the best of our knowledge, this paper is the first attempt to apply a visual object tracking method to the situation where the FOV of the camera switches in aerial videos.展开更多
文摘Resilient Packet Ring (RPR) is a Media Access Control (MAC) layer protocol that operates over a double counter-rotating ring network topology. RPR is designed to enhance Synchronous Digital Hierarchy(SDH) in order to handle data traffic more efficiently. Since Intelligent Protection Switching(IPS) is one of the key technologies in ring networks, RPR provides two intelligent protection algorithms: steering and wrapping. While wrapping in RPR in essence inherits the automatic protection switching(APS) algorithm of SDH, it also wastes the bandwidth on the wrapping ringlets and may result in severe congestion. Whereas steering in RPR provides high bandwidth utilization, its switching speed is low, because it is indeed a high layer's restoration algorithm. In this paper, integrated self-healing(ISH) algorithm as an effective algorithm for RPR is proposed, which synthesizes the merits of the two algorithms by transporting healing signal and computing routing in MAC layer. At last, the performance of ISH algorithm is analyzed and simulated.
基金supported by National Natural Science Foundation of China(Nos.61175032,61302154 and 61304096)
文摘Visual object tracking plays an important role in intelligent aerial surveillance by unmanned aerial vehicles(UAV). In ordinary applications, aerial videos are captured by cameras with a fixed-focus lens or a zoom lens, for which the field-of-view(FOV)of the camera is fixed or smoothly changed. In this paper, a special application of the visual tracking in aerial videos captured by the dual FOV camera is introduced, which is different from ordinary applications since the camera quickly switches its FOV during the capturing. Firstly, the tracking process with the dual FOV camera is analyzed, and a conclusion is made that the critical part for the whole process depends on the accurate tracking of the target at the moment of FOV switching. Then, a cascade mean shift tracker is proposed to deal with the target tracking under FOV switching. The tracker utilizes kernels with multiple bandwidths to execute mean shift locating, which is able to deal with the abrupt motion of the target caused by FOV switching. The target is represented by the background weighted histogram to make it well distinguished from the background, and a modification is made to the weight value in the mean shift process to accelerate the convergence of the tracker. Experimental results show that our tracker presents a good performance on both accuracy and efficiency for the tracking. To the best of our knowledge, this paper is the first attempt to apply a visual object tracking method to the situation where the FOV of the camera switches in aerial videos.