The aim of the present work is to investigate the numerical modeling of interfacial cracks that may appear at the interface between two isotropic elastic materials. The extended finite element method is employed to an...The aim of the present work is to investigate the numerical modeling of interfacial cracks that may appear at the interface between two isotropic elastic materials. The extended finite element method is employed to analyze brittle and bi-material interfacial fatigue crack growth by computing the mixed mode stress intensity factors(SIF). Three different approaches are introduced to compute the SIFs. In the first one, mixed mode SIF is deduced from the computation of the contour integral as per the classical J-integral method,whereas a displacement method is used to evaluate the SIF by using either one or two displacement jumps located along the crack path in the second and third approaches. The displacement jump method is rather classical for mono-materials,but has to our knowledge not been used up to now for a bimaterial. Hence, use of displacement jump for characterizing bi-material cracks constitutes the main contribution of the present study. Several benchmark tests including parametric studies are performed to show the effectiveness of these computational methodologies for SIF considering static and fatigue problems of bi-material structures. It is found that results based on the displacement jump methods are in a very good agreement with those of exact solutions, such as for the J-integral method, but with a larger domain of applicability and a better numerical efficiency(less time consuming and less spurious boundary effect).展开更多
The higher order displacement discontinuity method(HODDM) utilizing special crack tip elements has been used in the solution of linear elastic fracture mechanics(LEFM) problems. The paper has selected several example ...The higher order displacement discontinuity method(HODDM) utilizing special crack tip elements has been used in the solution of linear elastic fracture mechanics(LEFM) problems. The paper has selected several example problems from the fracture mechanics literature(with available analytical solutions) including center slant crack in an infinite and finite body, single and double edge cracks, cracks emanating from a circular hole. The numerical values of Mode Ⅰ and Mode Ⅱ SIFs for these problems using HODDM are in excellent agreement with analytical results(reaching up to 0.001% deviation from their analytical results). The HODDM is also compared with the XFEM and a modified XFEM results. The results show that the HODDM needs a considerably lower computational effort(with less than 400 nodes) than the XFEM and the modified XFEM(which needs more than 10000 nodes) to reach a much higher accuracy. The proposed HODDM offers higher accuracy and lower computation effort for a wide range of problems in LEFM.展开更多
A new node-pairs contact algorithm is proposed to deal with a composite material or bi-material interface crack face contact and friction problem (e.g., resistant coating and thermal barrier coatings) subjected to c...A new node-pairs contact algorithm is proposed to deal with a composite material or bi-material interface crack face contact and friction problem (e.g., resistant coating and thermal barrier coatings) subjected to complicated load conditions. To decrease the calculation scale and calculation errors, the local Lagrange multipliers are solved only on a pair of contact nodes using the Jacobi iteration method, and the constraint modification of the tangential multipliers are required. After the calculation of the present node-pairs Lagrange multiplier, it is turned to next contact node-pairs until all node-pairs have finished. Compared with an ordinary contact algorithm, the new local node-pairs contact algorithm is allowed a more precise element on the contact face without the stiffness matrix singularity. The stress intensity factors (SIFs) and the contact region of an infinite plate central crack are calculated and show good agreement with those in the literature. The contact zone near the crack tip as well as its influence on singularity of stress fields are studied. Furthermore, the frictional contacts are also considered and found to have a significant influence on the SIFs. The normalized mode-II stress intensity factors KII for the friction coefficient decrease by 16% when f changes from 1 to 0.展开更多
The dynamic stress intensity factor history for a half plane crack in an otherwise unbounded elastic body,with the crack faces subjected to a traction distribution consisting of two pairs of combined mode point loads ...The dynamic stress intensity factor history for a half plane crack in an otherwise unbounded elastic body,with the crack faces subjected to a traction distribution consisting of two pairs of combined mode point loads that move in a direction perpendicular to the crack edge is considered.The analytic expression for the combined mode stress intensity factors as a function of time for any point along the crack edge is obtained.The method of solution is based on the application of integral transform together with the Wiener-Hopf technique and the Cagniard-de Hoop method. Some features of the solution are discussed and graphical results for various point load speeds are presented.展开更多
文摘The aim of the present work is to investigate the numerical modeling of interfacial cracks that may appear at the interface between two isotropic elastic materials. The extended finite element method is employed to analyze brittle and bi-material interfacial fatigue crack growth by computing the mixed mode stress intensity factors(SIF). Three different approaches are introduced to compute the SIFs. In the first one, mixed mode SIF is deduced from the computation of the contour integral as per the classical J-integral method,whereas a displacement method is used to evaluate the SIF by using either one or two displacement jumps located along the crack path in the second and third approaches. The displacement jump method is rather classical for mono-materials,but has to our knowledge not been used up to now for a bimaterial. Hence, use of displacement jump for characterizing bi-material cracks constitutes the main contribution of the present study. Several benchmark tests including parametric studies are performed to show the effectiveness of these computational methodologies for SIF considering static and fatigue problems of bi-material structures. It is found that results based on the displacement jump methods are in a very good agreement with those of exact solutions, such as for the J-integral method, but with a larger domain of applicability and a better numerical efficiency(less time consuming and less spurious boundary effect).
文摘The higher order displacement discontinuity method(HODDM) utilizing special crack tip elements has been used in the solution of linear elastic fracture mechanics(LEFM) problems. The paper has selected several example problems from the fracture mechanics literature(with available analytical solutions) including center slant crack in an infinite and finite body, single and double edge cracks, cracks emanating from a circular hole. The numerical values of Mode Ⅰ and Mode Ⅱ SIFs for these problems using HODDM are in excellent agreement with analytical results(reaching up to 0.001% deviation from their analytical results). The HODDM is also compared with the XFEM and a modified XFEM results. The results show that the HODDM needs a considerably lower computational effort(with less than 400 nodes) than the XFEM and the modified XFEM(which needs more than 10000 nodes) to reach a much higher accuracy. The proposed HODDM offers higher accuracy and lower computation effort for a wide range of problems in LEFM.
基金supported by the National Basic Research Program of China(Grant No.2012CB026200)the National Natural Science Foundation of China(Grant No.50878048)
文摘A new node-pairs contact algorithm is proposed to deal with a composite material or bi-material interface crack face contact and friction problem (e.g., resistant coating and thermal barrier coatings) subjected to complicated load conditions. To decrease the calculation scale and calculation errors, the local Lagrange multipliers are solved only on a pair of contact nodes using the Jacobi iteration method, and the constraint modification of the tangential multipliers are required. After the calculation of the present node-pairs Lagrange multiplier, it is turned to next contact node-pairs until all node-pairs have finished. Compared with an ordinary contact algorithm, the new local node-pairs contact algorithm is allowed a more precise element on the contact face without the stiffness matrix singularity. The stress intensity factors (SIFs) and the contact region of an infinite plate central crack are calculated and show good agreement with those in the literature. The contact zone near the crack tip as well as its influence on singularity of stress fields are studied. Furthermore, the frictional contacts are also considered and found to have a significant influence on the SIFs. The normalized mode-II stress intensity factors KII for the friction coefficient decrease by 16% when f changes from 1 to 0.
基金the National Natural Science Foundation of China
文摘The dynamic stress intensity factor history for a half plane crack in an otherwise unbounded elastic body,with the crack faces subjected to a traction distribution consisting of two pairs of combined mode point loads that move in a direction perpendicular to the crack edge is considered.The analytic expression for the combined mode stress intensity factors as a function of time for any point along the crack edge is obtained.The method of solution is based on the application of integral transform together with the Wiener-Hopf technique and the Cagniard-de Hoop method. Some features of the solution are discussed and graphical results for various point load speeds are presented.