The local characteristics of multi-dimensional modeling method of multivariate copula. A new modeling remedy this defect. Different types of copula distribution random variables are seldom considered in the general me...The local characteristics of multi-dimensional modeling method of multivariate copula. A new modeling remedy this defect. Different types of copula distribution random variables are seldom considered in the general method, called pair-copula construction, is introduced to functions are allowed to be introduced in this method. Correspondingly, the related characteristics of complex multivariate can be described by a cascade of pair-copula acting on two variables at a time. In the analysis of asynchronism-synchronism of regional precipitation in WED inter- basin water transfer areas, the pair-copula construction method is compared with the general modeling method of mul- tivariate copula. The results show that the local dependence structure would exist among hydrologic variables even in three-dimensional cases. In this situation, the general modeling method of multivariate copula would face difficulties in fitting distribution. However, the pair-copula construction method could capture the local information of hydrologic variables efficiently by introducing different types of copula distribution functions. Moreover, the compensation ca- pacity of water resources is strong in different hydrological areas of WED water transfer project. The asynchronous frequency of wetness and dryness is 69.64% and the favorable frequency for water transfer is 46.15%.展开更多
Nowadays, there is a growing emphasis on Inter-basin water transfer projects as costly activities with ambiguous effects on environment, society and economy. Since the concept of climate change was in its embryonic ph...Nowadays, there is a growing emphasis on Inter-basin water transfer projects as costly activities with ambiguous effects on environment, society and economy. Since the concept of climate change was in its embryonic phase before 1990’s, the majority of these projects planned before that period have not considered the effect of long term variation of water resources. In all of these numerous operational and under-construction projects, an intelligent selection of the best water transmission protocol, can help the governments to optimize their expenditures on these projects ,and also can help water resources managers to face climate change effects wisely. In this paper as a case study, Dez to Qomrood inter-basin water transfer project is considered to evaluate the efficiency of three different protocols in long term. The effect of climate change has been forecasted via a wide range of GCMs (Global Circulation Model) in order to calculate the change of flow in the basin's area with different climate scenarios. After these calculation, a water allocation model has been used to evaluate which of these three water transmission protocols (Proportional Allocation (PA), Fix Upstream allocation (FU), and Fix Downstream allocation (FD)) is the most efficient logic switch economically in a framework including both upstream and downstream stakeholders. As the final result, it can be inferred that Fix Downstream allocation (FD) protocol can supply more population especially with urban water for a fix expense and also is the most adapted protocol with future global change, at least in the first round of sustainability assessment.展开更多
Demand for fresh water, as one of the major natural resources, is increasing rapidly with increasing development and environmental degradation. The continued abstraction of water from Lake Ziway and its main feeder ri...Demand for fresh water, as one of the major natural resources, is increasing rapidly with increasing development and environmental degradation. The continued abstraction of water from Lake Ziway and its main feeder rivers Meki and Katar for irrigation indicates that the water demand may soon exceed the supply. To illustrate disparities in spatial distribution of water resources, the Upper Awash sub-basin, which shares a water-divide with the CRVL sub-basin, has large flow volumes particularly in the rainy season and suffers with seasonal flooding. The rationale behind regaining the water in CRVL relies on this non-uniform spatial distribution of fresh water, calling for a balance between water surplus and deficit regions. For this reason, Inter Basin Water Transfer (IBWT) is suggested as a viable option to augment utilizable water resources of the Upper Awash sub-basin to reduce the significant pressure on the water supply of the rapidly developing urban and irrigation areas in the CRVL sub-basin. A water evaluation and planning (WEAP) model was used to quantify the amount of surplus water in the donor basin, when examining the hydrological dynamics of the basins. Furthermore, optimal flow diversion scenarios were generated by maintaining two baseline scenario constraints. The estimated surplus water in the rainy season is expected to contribute 18 million cubic meters (mcm), 88 mcm and 192 mcm in months June, July and August respectively under average conditions. The optimal amount of diverted water could potentially stabilize the environmental degradation of Lake Ziway and Lake Abijata by compensating for development-driven abstraction and surface water evaporation respectively.展开更多
The joint operation of inter-basin water transfer-supply(IBWTS)project can be more complex when there is joint water demand in multi-reservoir system and multi-importing reservoirs simultaneously transferring water fr...The joint operation of inter-basin water transfer-supply(IBWTS)project can be more complex when there is joint water demand in multi-reservoir system and multi-importing reservoirs simultaneously transferring water from exporting reservoir.In this study,a joint operating rule is proposed for the purpose of solving such complex operation problem.This rule is composed of a set of sub-rules,including hedging rule curves of virtual aggregation reservoir(i.e.equivalent reservoir)and other individual reservoirs,water-transfer rule curves of each individual reservoir,as well as some of important assisted rules.These assisted rules refer to allocation models for water transfer-supply.In the proposed rule,an equivalent reservoir is established to determine under what condition the water supply should be reduced and specify the total supplied water for joint water demand(i.e.aggregation method).Allocation models are developed to distribute the total transferred water into each importing reservoir and determine the water releases for joint water demand by each member reservoir of the aggregation system(i.e.decomposition method).And these models are integrated with a set of influence factors such as hydrologic characteristics,reservoir storage or vacant storage,regulating ability,water-supply pressure,and so on.The aggregation of multi-reservoirs and the disaggregation of water quantities are taken into a whole consideration to reduce the complexity in reallocation of water target storage or water release.Finally,the proposed rule is applied to the North-line IBWTS Project in Liaoning Province,China.The results indicate that the proposed rule can take full advantage of hydrologic compensation in basins and capacity compensation in reservoirs.Thus it can improve the utilization efficiency of water resources in system.展开更多
Inter-basin Water Transfer Projects require the appropriate financing model to attract large amounts of social investment.Therefore,financing model decision becomes the key of engineering construction.In three aspects...Inter-basin Water Transfer Projects require the appropriate financing model to attract large amounts of social investment.Therefore,financing model decision becomes the key of engineering construction.In three aspects,such as the subject,the object and the target of the financing model,Grey Target Model is established in this paper.First,the complex financing mode decision problems of Inter-basin Water Transfer Projects are decomposed by using hierarchical decomposition method.Then Analytical Hierarchy Process(AHP) method is used to calculate the comprehensive weight of evaluation index.Experts' opinions financing model are transformed into the evaluation matrix based on the Dephi method.The Weighted Grey Target Model is used to calculate the approaching degree of financing model and assists financing mode decision.In addition,this paper takes the water diversion project from the Han to the Wei River of Shaanxi Province as a verification example for the model.For other water diversion projects,the evaluation results are also reliable and provide theoretical references for the financing model decision of Inter-basin Water Transfer Projects.展开更多
This paper develops a new inter-basin water transfer-supply and risk assessment model with consideration of rainfall forecast information. Firstly, based on the current state of reservoir and rainfall forecast informa...This paper develops a new inter-basin water transfer-supply and risk assessment model with consideration of rainfall forecast information. Firstly, based on the current state of reservoir and rainfall forecast information from the global forecast system (GFS), the actual diversion amount can be determined according to the inter-basin water transfer rules with the decision tree method; secondly, the reservoir supply operation system is used to distribute water resource of the inter-basin water transfer reservoir; finally, the integrated risk assessment model is built by selecting the reliability of water transfer, the reliability (water shortage risk), the resiliency and the vulnerability of water supply as risk analysis indexes. The case study shows that the inter-basin water transfer-supply model with rainfall forecast information considered can reduce the comprehensive risk and improve the utilization efficiency of water resource, as compared with conventional and optimal water distribution models.展开更多
Attaining a decarbonized and sustainable energy system,which is the core solution to global energy issues,is accessible through the development of hydrogen energy.Proton-exchange membrane water electrolyzers(PEMWEs)ar...Attaining a decarbonized and sustainable energy system,which is the core solution to global energy issues,is accessible through the development of hydrogen energy.Proton-exchange membrane water electrolyzers(PEMWEs)are promising devices for hydrogen production,given their high efficiency,rapid responsiveness,and compactness.Bipolar plates account for a relatively high percentage of the total cost and weight compared with other components of PEMWEs.Thus,optimization of their design may accelerate the promotion of PEMWEs.This paper reviews the advances in materials and flow-field design for bipolar plates.First,the working conditions of proton-exchange membrane fuel cells(PEMFCs)and PEMWEs are compared,including reaction direction,operating temperature,pressure,input/output,and potential.Then,the current research status of bipolar-plate substrates and surface coatings is summarized,and some typical channel-rib flow fields and porous flow fields are presented.Furthermore,the effects of materials on mass and heat transfer and the possibility of reducing corrosion by improving the flow field structure are explored.Finally,this review discusses the potential directions of the development of bipolar-plate design,including material fabrication,flow-field geometry optimization using threedimensional printing,and surface-coating composition optimization based on computational materials science.展开更多
Inspired by the function of crucial components in photosystemⅡ(PSⅡ),electrochemical and dyesensitized photoelectrochemical(DSPEC)water oxidation devices were constructed by the selfassembly of well-designed amphipat...Inspired by the function of crucial components in photosystemⅡ(PSⅡ),electrochemical and dyesensitized photoelectrochemical(DSPEC)water oxidation devices were constructed by the selfassembly of well-designed amphipathic Ru(bda)-based catalysts(bda=2,2'-bipyrdine-6,6'-dicarbonoxyl acid)and aliphatic chain decorated electrode surfaces,forming lipid bilayer membrane(LBM)-like structures.The Ru(bda)catalysts on electrode-supported LBM films demonstrated remarkable water oxidation performance with different O-O formation mechanisms.However,compared to the slow charge transfer process,the O-O formation pathways did not determine the PEC water oxidation efficiency of the dyesensitized photoanodes,and the different reaction rates for similar catalysts with different catalytic paths did not determine the PEC performance of the DSPECs.Instead,charge transfer plays a decisive role in the PEC water oxidation rate.When an indolo[3,2-b]carbazole derivative was introduced between the Ru(bda)catalysts and aliphatic chain-modified photosensitizer in LBM films,serving as a charge transfer mediator for the tyrosine-histidine pair in PSⅡ,the PEC water oxidation performance of the corresponding photoanodes was dramatically enhanced.展开更多
The transfer of pressurized water reactor(PWR)technology from France to China is an important event in the history of Sino-French scientific and technological relations.China has gradually achieved self-reliance in th...The transfer of pressurized water reactor(PWR)technology from France to China is an important event in the history of Sino-French scientific and technological relations.China has gradually achieved self-reliance in the field of PWR technology through the introduction and subsequent absorption of France's 900 MW reactors.Compared with the process of introducing and absorbing similar technology from the United States by France,China's experience has been more complicated.This circumstance reflects the differences in the nuclear power technology systems between the two countries.France's industrial strength and early acquisition of nuclear power technology laid a solid foundation for mastering PWR technology.On the other hand,although China established a weak foundation through the implementation of the"728 Project,"and tried hard to negotiate with France,the substantive content of the technology transfer was very limited.By way of the policy transition from"unhooking of technology and trade"to"integration of technology and trade,"China ultimately accomplished the absorption and innovation of PWR technology through the Ling'ao NPP.展开更多
Groundwater movement beneath watershed divide is one component of the hydrological cycle that is typically ignored due to difficulty in analysis. Numerical ground-water models, like TAGSAC, have been used extensively ...Groundwater movement beneath watershed divide is one component of the hydrological cycle that is typically ignored due to difficulty in analysis. Numerical ground-water models, like TAGSAC, have been used extensively for predicting aquifer responses to external stresses. In this paper TAGSAC code was developed to identify the inter-basin groundwater transfer (IBGWT) between upper Awash River basin (UARB) and upper rift valley lakes basin (URVLB) of Ethiopia. For the identification three steady state groundwater models (for UARB, URVLB and for the two combined basins) were first created and calibrated for the 926 inventoried wells. The first two models are conceptualized by considering the watershed divide between the two basins as no-flow. The third model avoids the surface water divide which justifies IBGWT. The calibration of these three models was made by changing the recharge and hydrogeologic parameters of the basins. The goodness of fit indicators (GoFIs) obtained was better for the combined model than the model that describes the URVLB. Furthermore, the hydraulic head distribution obtained from the combined model clearly indicates that there is a groundwater flow that doesn’t respect the surface water divide. The most obvious effect of IBGWT observed in these two basins is that it diminishes surface water discharge from URVLB, and enhances discharge in the UARB. Moreover, the result of this study indicates potential for internal and cross contamination of the two adjacent groundwater.展开更多
Hydrophobic membrane can provide fast mass transfer for absorption-desorption of gasesform liquid to absorbent.The removal of ammonia from ammonia water and absorption with dilutesulphuric acid was studied in a pilot ...Hydrophobic membrane can provide fast mass transfer for absorption-desorption of gasesform liquid to absorbent.The removal of ammonia from ammonia water and absorption with dilutesulphuric acid was studied in a pilot plant with polypropylene hollow fiber column,The removalrate and influences of operation temperature,flow rate and concentration on mass transferperformances were discussed mathematically.Experimental results and computer calculation show thatthe ammonia removal rate is not affected by the feed concentration for a given system.Both partialand overall mass transfer coefficients vary along the axis of the fiber,and the mass transfer for themembrane process is controlled by membrane resistance.展开更多
A water model with a geometric similarity ratio of 1:5 was developed to investigate the gas-liquid mass transfer and flow charac- teristics in a Peirce-Smith converter. A gas mixture of CO2 and Ar was injected into a...A water model with a geometric similarity ratio of 1:5 was developed to investigate the gas-liquid mass transfer and flow charac- teristics in a Peirce-Smith converter. A gas mixture of CO2 and Ar was injected into a NaOH solution bath. The flow field, volumetric mass transfer coefficient per unit volume (Ak/V; where A is the contact area between phases, V is the volume, and k is the mass transfer coeffi- cient), and gas utilization ratio (t/) were then measured at different gas flow rates and blow angles. The results showed that the flow field could be divided into five regions, i.e., injection, strong loop, weak loop, splashing, and dead zone. Whereas the Ak/V of the bath increased and then decreased with increasing gas flow rate, and n steadily increased. When the converter was rotated clockwise, both Ak/F and t/increased. However, the flow condition deteriorated when the gas flow rate and blow angle were drastically increased. Therefore, these para- meters must be controlled to optimal conditions. In the proposed model, the optimal gas flow rate and blow angle were 7.5 m3.h-1 and 10°, respectively.展开更多
Baoying pumping station is a part of source pumping stations in East Route Project of South-to-North Water Transfer in China. Aiming at the characteristics of head varying, and making use of the function of pump adjus...Baoying pumping station is a part of source pumping stations in East Route Project of South-to-North Water Transfer in China. Aiming at the characteristics of head varying, and making use of the function of pump adjustable blade, mathematical models of pumping station optimal operation are established and solved with genetic algorithm. For different total pumping discharge and total pumping volume of water per day, in order to minimize pumping station operation cost, the number and operation duties of running pump units are respectively determined at different periods of time in a day. The results indicate that the saving of electrical cost is significantly effected by the schemes of adjusting blade angles and time-varying electrical price when pumping certain water volume of water per day, and compared with conventional operation schemes (namely, the schemes of pumping station operation at design blade angles based on certain pumping discharge), the electrical cost is saved by 4.73%-31.27%. Also, compared with the electrical cost of conventional operation schemes, the electrical cost is saved by 2.03%-5.79% by the schemes of adjusting blade angles when pumping certain discharge.展开更多
The hydrochemical composition of surface water and groundwater is a key parameter for understanding the evolution of water and its quality.In particular,little is known about the impact of transferred water on surface...The hydrochemical composition of surface water and groundwater is a key parameter for understanding the evolution of water and its quality.In particular,little is known about the impact of transferred water on surface water and groundwater.In this study,Baiyangdian Lake was selected as a typical area for extensive groundwater exploration and surface water transfer in the North China Plain.Surface water and groundwater samples were sampled in dry/wet seasons and then analyzed before/after the water transfer,respectively.Generally,surface water and groundwater are extensively hydrologically connected based on hydrochemical evidence.It was found that the hydrochemical composition of the shallow groundwater is affected by the surface water and that the water quality of the deep groundwater is stable.However,inter-aquifer recharge processes from the shallow groundwater to the deep groundwater existed in the anthropogenic region impacted with high nitrate-ion concentrations.Also,the hydrochemical composition of the surface water and groundwater was dominated by rock-weathering and evaporation-precipitation processes.Due to the existence of the deep vadose zone in the alluvial fan,Na^(+)was exchanged into soil matrices during the leakage of the surface water.In addition,the transferred water resulted in surface water with good quality,and it also played as an important recharge source to groundwater.As the most important water resource for irrigation and drinking,deep groundwater should be paid more attention in the alluvial fan with frequent water transfer and extensive groundwater exploration.展开更多
Previous research shows that there is a strong correlation between saltwater intrusion in the Yangtze Estuary and discharge at Datong. In the near future, the discharge of the Yangtze River during dry seasons will dec...Previous research shows that there is a strong correlation between saltwater intrusion in the Yangtze Estuary and discharge at Datong. In the near future, the discharge of the Yangtze River during dry seasons will decrease due to the construction and operation of large water diversion projects, including the South-to-North Water Transfer Project, which will further exacerbate saltwater intrusion in the estuary. In this paper, a nested 1D river network model and a 2D saltwater numerical model are used to associate saltwater intrusion in the Yangtze Estuary with different values of discharge at Datong. It is concluded that 13 000 m3/s is the critical discharge at Datong for preventing saltwater intrusion and controlling the volume of water transferred by the South-to-North Water Transfer Project. Furthermore, based on the analysis of river discharge from Datong to Xuliujing and in consideration of the influence of all of the water diversion projects, operation schemes are proposed for the Eastern Route of the South-to-North Water Transfer Project for different hydrological years.展开更多
We conducted a transient experimental investigation of steam–water direct contact condensation in the absence of noncondensible gas in a laboratory-scale column with the inner diameter of 325 mm and the height of 104...We conducted a transient experimental investigation of steam–water direct contact condensation in the absence of noncondensible gas in a laboratory-scale column with the inner diameter of 325 mm and the height of 1045 mm. We applied a new analysis method for the steam state equation to analyze the molar quantity change in steam over the course of the experiment and determined the transient steam variation. We also investigated the influence of flow rates and temperatures ofcooling water on the efficiency ofsteam condensation. Our experimental results show that appropriate increasing of the cooling water flow rate can significantly accelerate the steam condensation. We achieved a rapid increase in the total volumetric heat transfer coefficient by increasing the flow rate of cooling water, which indicated a higher thermal convection between the steam and the cooling water with higher flow rates. We found that the temperature ofcooling water did not play an important role on steam condensation. This method was confirmed to be effective for rapid recovering ofsteam.展开更多
In order to study water transfer characteristics inside non-saturated media during methane hydrate formation and dissociation processes,water changes on the top,middle and bottom locations of experimental media during...In order to study water transfer characteristics inside non-saturated media during methane hydrate formation and dissociation processes,water changes on the top,middle and bottom locations of experimental media during the reaction processes were continuously followed with a novel apparatus with three pF-meter sensors.Coarse sand,fine sand and loess were chosen as experimental media.It was experimentally observed that methane hydrate was easier formed inside coarse sand and fine sand than inside loess.Methane hydrate formation configuration and water transfer characteristics during methane hydrate formation processes were very different among the different non-saturated media,which were important for understanding methane hydrate formation and dissociation mechanism inside sediments in nature.展开更多
Nansi Lake and Hongze Lake are both water storage lakes along the East Route of the South-to-North Water Transfer project(ESNT).Frequent changes in hydrologic properties are responsible factors for controlling the zoo...Nansi Lake and Hongze Lake are both water storage lakes along the East Route of the South-to-North Water Transfer project(ESNT).Frequent changes in hydrologic properties are responsible factors for controlling the zooplankton community assemblages in both lakes,so we studied the possible influence of water transfer and environmental factors on zooplankton community structure and abundance.Zooplankton assemblages were investigated seasonally for one year in both lakes;a total of 133 and 122 zooplankton taxa were identified in Nansi Lake and Hongze Lake,respectively.The most dominant rotifer species were littoral,e.g.,Keratella tecta,Keratella valga and Lecane lunaris in Nansi Lake and Brachionus angularis,Brachionus forficula and Polyarthra vulgaris in Hongze Lake.Comparatively,Nansi Lake had a higher Shannon-Wiener diversity index value(5.13),while Hongze Lake had a higher species richness index(4.21).The average number of zooplankton across seasons in Nansi Lake(protozoa:774±63 ind./L,rotifers:4817±212 ind./L,cladocerans:896±14 ind./L,copepod:435±42 ind./L)was comparatively lower than Hongze Lake(protozoa:1238±63 ind./L,rotifers:6576±112 ind./L,cladocerans:1013±20 ind./L,copepod:534±25 ind./L).Canonical correspondence analysis identified differing environmental gradients that were most responsible for influencing zooplankton communities in the two lakes(Hongze Lake:NH4-N,total nitrogen,transparency and pH;Nansi:pH,temperature and total phosphorus).Frequent changes related to water transfer in lakes favoured the diversity of rotifers and protozoa communities.Zooplankton habitat preference,changes in community structure and opportunistic peaks and extinction of certain taxa were also observed in the study lakes.展开更多
Gas hydrates formation and dissociation processes inside porous media are always accompanied by water transfer behavior, which is similar to the water behavior of ice freezing and thawing processes. These processes ha...Gas hydrates formation and dissociation processes inside porous media are always accompanied by water transfer behavior, which is similar to the water behavior of ice freezing and thawing processes. These processes have been studied by many researchers, but all the studies are so far on the water transfer characteristics outside porous media and the water transfer characteristics inside porous media have been little known. In this study, in order to study the water transfer characteristics inside porous media during methane hydrate formation and dissociation processes, a novel apparatus with three pF-meter sensors which can detect water content changes inside porous media was applied. It was experimentally observed that methane hydrate formation processes were accompanied by water transfer from bottom to top inside porous media, however, the water behavior during hydrate dissociation processes was abnormal, for which more studies are needed to find out the real reason in our future work.展开更多
The main canal of the Middle Route Project of South-to-North Water Transfer totals more than 1 240 km in length. In Henan Province and Hebei Province, there will be a section of more than 120 km passing through an exp...The main canal of the Middle Route Project of South-to-North Water Transfer totals more than 1 240 km in length. In Henan Province and Hebei Province, there will be a section of more than 120 km passing through an expansive soils area. Expansive soils is a special kind of tenacious clay, which swells when meeting with water and shrinks when losing water. With complicated mechanical properties, it changes with the variation of water content. As a result, expansive soils become the key object of study on unsaturated soils mechanics for the project. From the status of study on unsaturated soils at home and abroad, this paper covers an analysis on stability analysis method of expansive soils slope, determination of expansive soils strength, rational design of canal slope ratio and support, and forecast of landslide for the Middle Route Project of South-to-North Water Transfer.展开更多
基金Supported by National Natural Science Foundation of China (No. 50979011)
文摘The local characteristics of multi-dimensional modeling method of multivariate copula. A new modeling remedy this defect. Different types of copula distribution random variables are seldom considered in the general method, called pair-copula construction, is introduced to functions are allowed to be introduced in this method. Correspondingly, the related characteristics of complex multivariate can be described by a cascade of pair-copula acting on two variables at a time. In the analysis of asynchronism-synchronism of regional precipitation in WED inter- basin water transfer areas, the pair-copula construction method is compared with the general modeling method of mul- tivariate copula. The results show that the local dependence structure would exist among hydrologic variables even in three-dimensional cases. In this situation, the general modeling method of multivariate copula would face difficulties in fitting distribution. However, the pair-copula construction method could capture the local information of hydrologic variables efficiently by introducing different types of copula distribution functions. Moreover, the compensation ca- pacity of water resources is strong in different hydrological areas of WED water transfer project. The asynchronous frequency of wetness and dryness is 69.64% and the favorable frequency for water transfer is 46.15%.
文摘Nowadays, there is a growing emphasis on Inter-basin water transfer projects as costly activities with ambiguous effects on environment, society and economy. Since the concept of climate change was in its embryonic phase before 1990’s, the majority of these projects planned before that period have not considered the effect of long term variation of water resources. In all of these numerous operational and under-construction projects, an intelligent selection of the best water transmission protocol, can help the governments to optimize their expenditures on these projects ,and also can help water resources managers to face climate change effects wisely. In this paper as a case study, Dez to Qomrood inter-basin water transfer project is considered to evaluate the efficiency of three different protocols in long term. The effect of climate change has been forecasted via a wide range of GCMs (Global Circulation Model) in order to calculate the change of flow in the basin's area with different climate scenarios. After these calculation, a water allocation model has been used to evaluate which of these three water transmission protocols (Proportional Allocation (PA), Fix Upstream allocation (FU), and Fix Downstream allocation (FD)) is the most efficient logic switch economically in a framework including both upstream and downstream stakeholders. As the final result, it can be inferred that Fix Downstream allocation (FD) protocol can supply more population especially with urban water for a fix expense and also is the most adapted protocol with future global change, at least in the first round of sustainability assessment.
文摘Demand for fresh water, as one of the major natural resources, is increasing rapidly with increasing development and environmental degradation. The continued abstraction of water from Lake Ziway and its main feeder rivers Meki and Katar for irrigation indicates that the water demand may soon exceed the supply. To illustrate disparities in spatial distribution of water resources, the Upper Awash sub-basin, which shares a water-divide with the CRVL sub-basin, has large flow volumes particularly in the rainy season and suffers with seasonal flooding. The rationale behind regaining the water in CRVL relies on this non-uniform spatial distribution of fresh water, calling for a balance between water surplus and deficit regions. For this reason, Inter Basin Water Transfer (IBWT) is suggested as a viable option to augment utilizable water resources of the Upper Awash sub-basin to reduce the significant pressure on the water supply of the rapidly developing urban and irrigation areas in the CRVL sub-basin. A water evaluation and planning (WEAP) model was used to quantify the amount of surplus water in the donor basin, when examining the hydrological dynamics of the basins. Furthermore, optimal flow diversion scenarios were generated by maintaining two baseline scenario constraints. The estimated surplus water in the rainy season is expected to contribute 18 million cubic meters (mcm), 88 mcm and 192 mcm in months June, July and August respectively under average conditions. The optimal amount of diverted water could potentially stabilize the environmental degradation of Lake Ziway and Lake Abijata by compensating for development-driven abstraction and surface water evaporation respectively.
基金supported by the Major International(Regional)Cooperation Project(Grant No.51320105010)the National Natural Science Foundation of China(Grant Nos.51379027,51109025)the Fundamental Research Fund for the Central Universities(Grant No.DUT13JS06)
文摘The joint operation of inter-basin water transfer-supply(IBWTS)project can be more complex when there is joint water demand in multi-reservoir system and multi-importing reservoirs simultaneously transferring water from exporting reservoir.In this study,a joint operating rule is proposed for the purpose of solving such complex operation problem.This rule is composed of a set of sub-rules,including hedging rule curves of virtual aggregation reservoir(i.e.equivalent reservoir)and other individual reservoirs,water-transfer rule curves of each individual reservoir,as well as some of important assisted rules.These assisted rules refer to allocation models for water transfer-supply.In the proposed rule,an equivalent reservoir is established to determine under what condition the water supply should be reduced and specify the total supplied water for joint water demand(i.e.aggregation method).Allocation models are developed to distribute the total transferred water into each importing reservoir and determine the water releases for joint water demand by each member reservoir of the aggregation system(i.e.decomposition method).And these models are integrated with a set of influence factors such as hydrologic characteristics,reservoir storage or vacant storage,regulating ability,water-supply pressure,and so on.The aggregation of multi-reservoirs and the disaggregation of water quantities are taken into a whole consideration to reduce the complexity in reallocation of water target storage or water release.Finally,the proposed rule is applied to the North-line IBWTS Project in Liaoning Province,China.The results indicate that the proposed rule can take full advantage of hydrologic compensation in basins and capacity compensation in reservoirs.Thus it can improve the utilization efficiency of water resources in system.
基金partly supported by the National Natural Science Foundation of China (Grant Nos.51209170,and 51479160)the foundation for the Plan Projects of Water Conservancy Science and Technology of Shaanxi Province (Grant No.2013SLKJ05)the Project Supported by Natural Science Basic Research Plan in Shaanxi Province of China (Grant No.2016JQ5061)
文摘Inter-basin Water Transfer Projects require the appropriate financing model to attract large amounts of social investment.Therefore,financing model decision becomes the key of engineering construction.In three aspects,such as the subject,the object and the target of the financing model,Grey Target Model is established in this paper.First,the complex financing mode decision problems of Inter-basin Water Transfer Projects are decomposed by using hierarchical decomposition method.Then Analytical Hierarchy Process(AHP) method is used to calculate the comprehensive weight of evaluation index.Experts' opinions financing model are transformed into the evaluation matrix based on the Dephi method.The Weighted Grey Target Model is used to calculate the approaching degree of financing model and assists financing mode decision.In addition,this paper takes the water diversion project from the Han to the Wei River of Shaanxi Province as a verification example for the model.For other water diversion projects,the evaluation results are also reliable and provide theoretical references for the financing model decision of Inter-basin Water Transfer Projects.
基金supported by the National Natural Science Foundation of China (Grant No. 50979011)
文摘This paper develops a new inter-basin water transfer-supply and risk assessment model with consideration of rainfall forecast information. Firstly, based on the current state of reservoir and rainfall forecast information from the global forecast system (GFS), the actual diversion amount can be determined according to the inter-basin water transfer rules with the decision tree method; secondly, the reservoir supply operation system is used to distribute water resource of the inter-basin water transfer reservoir; finally, the integrated risk assessment model is built by selecting the reliability of water transfer, the reliability (water shortage risk), the resiliency and the vulnerability of water supply as risk analysis indexes. The case study shows that the inter-basin water transfer-supply model with rainfall forecast information considered can reduce the comprehensive risk and improve the utilization efficiency of water resource, as compared with conventional and optimal water distribution models.
基金the National Natural Science Foundation of China(No.52125102)the National Key Research and Development Program of China(No.2021YFB4000101)Fundamental Research Funds for t he Central Universities(No.FRF-TP-2021-02C2)。
文摘Attaining a decarbonized and sustainable energy system,which is the core solution to global energy issues,is accessible through the development of hydrogen energy.Proton-exchange membrane water electrolyzers(PEMWEs)are promising devices for hydrogen production,given their high efficiency,rapid responsiveness,and compactness.Bipolar plates account for a relatively high percentage of the total cost and weight compared with other components of PEMWEs.Thus,optimization of their design may accelerate the promotion of PEMWEs.This paper reviews the advances in materials and flow-field design for bipolar plates.First,the working conditions of proton-exchange membrane fuel cells(PEMFCs)and PEMWEs are compared,including reaction direction,operating temperature,pressure,input/output,and potential.Then,the current research status of bipolar-plate substrates and surface coatings is summarized,and some typical channel-rib flow fields and porous flow fields are presented.Furthermore,the effects of materials on mass and heat transfer and the possibility of reducing corrosion by improving the flow field structure are explored.Finally,this review discusses the potential directions of the development of bipolar-plate design,including material fabrication,flow-field geometry optimization using threedimensional printing,and surface-coating composition optimization based on computational materials science.
基金conducted by the Fundamental Research Center of Artificial Photosynthesis(FReCAP)financially supported by the National Natural Science Foundation of China(22172011 and 22088102)+1 种基金the National Key R&D Program of China(2022YFA0911904)the Fundamental Research Funds for the Central Universities(DUT22LK06,DUT22QN213 and DUT23LAB611)。
文摘Inspired by the function of crucial components in photosystemⅡ(PSⅡ),electrochemical and dyesensitized photoelectrochemical(DSPEC)water oxidation devices were constructed by the selfassembly of well-designed amphipathic Ru(bda)-based catalysts(bda=2,2'-bipyrdine-6,6'-dicarbonoxyl acid)and aliphatic chain decorated electrode surfaces,forming lipid bilayer membrane(LBM)-like structures.The Ru(bda)catalysts on electrode-supported LBM films demonstrated remarkable water oxidation performance with different O-O formation mechanisms.However,compared to the slow charge transfer process,the O-O formation pathways did not determine the PEC water oxidation efficiency of the dyesensitized photoanodes,and the different reaction rates for similar catalysts with different catalytic paths did not determine the PEC performance of the DSPECs.Instead,charge transfer plays a decisive role in the PEC water oxidation rate.When an indolo[3,2-b]carbazole derivative was introduced between the Ru(bda)catalysts and aliphatic chain-modified photosensitizer in LBM films,serving as a charge transfer mediator for the tyrosine-histidine pair in PSⅡ,the PEC water oxidation performance of the corresponding photoanodes was dramatically enhanced.
基金a phase study of a key project of the Fourteenth Five-Year Plan of the Institute for the History of Natural Sciences,Chinese Academy of Sciences:“A Comparative Study of the Sino-Foreign History of Scientific and Technological Innovation:The Road to Scientific and Technological Self-Reliance and Self-Improvement”,E2291J01。
文摘The transfer of pressurized water reactor(PWR)technology from France to China is an important event in the history of Sino-French scientific and technological relations.China has gradually achieved self-reliance in the field of PWR technology through the introduction and subsequent absorption of France's 900 MW reactors.Compared with the process of introducing and absorbing similar technology from the United States by France,China's experience has been more complicated.This circumstance reflects the differences in the nuclear power technology systems between the two countries.France's industrial strength and early acquisition of nuclear power technology laid a solid foundation for mastering PWR technology.On the other hand,although China established a weak foundation through the implementation of the"728 Project,"and tried hard to negotiate with France,the substantive content of the technology transfer was very limited.By way of the policy transition from"unhooking of technology and trade"to"integration of technology and trade,"China ultimately accomplished the absorption and innovation of PWR technology through the Ling'ao NPP.
文摘Groundwater movement beneath watershed divide is one component of the hydrological cycle that is typically ignored due to difficulty in analysis. Numerical ground-water models, like TAGSAC, have been used extensively for predicting aquifer responses to external stresses. In this paper TAGSAC code was developed to identify the inter-basin groundwater transfer (IBGWT) between upper Awash River basin (UARB) and upper rift valley lakes basin (URVLB) of Ethiopia. For the identification three steady state groundwater models (for UARB, URVLB and for the two combined basins) were first created and calibrated for the 926 inventoried wells. The first two models are conceptualized by considering the watershed divide between the two basins as no-flow. The third model avoids the surface water divide which justifies IBGWT. The calibration of these three models was made by changing the recharge and hydrogeologic parameters of the basins. The goodness of fit indicators (GoFIs) obtained was better for the combined model than the model that describes the URVLB. Furthermore, the hydraulic head distribution obtained from the combined model clearly indicates that there is a groundwater flow that doesn’t respect the surface water divide. The most obvious effect of IBGWT observed in these two basins is that it diminishes surface water discharge from URVLB, and enhances discharge in the UARB. Moreover, the result of this study indicates potential for internal and cross contamination of the two adjacent groundwater.
文摘Hydrophobic membrane can provide fast mass transfer for absorption-desorption of gasesform liquid to absorbent.The removal of ammonia from ammonia water and absorption with dilutesulphuric acid was studied in a pilot plant with polypropylene hollow fiber column,The removalrate and influences of operation temperature,flow rate and concentration on mass transferperformances were discussed mathematically.Experimental results and computer calculation show thatthe ammonia removal rate is not affected by the feed concentration for a given system.Both partialand overall mass transfer coefficients vary along the axis of the fiber,and the mass transfer for themembrane process is controlled by membrane resistance.
基金financially supported by the National Natural Science Foundation of China(No.51504018)the China Postdoctoral Science Foundation(2015M580986)the Fundamental Research Funds for the Central Universities(FRF-TP-17-038A2)
文摘A water model with a geometric similarity ratio of 1:5 was developed to investigate the gas-liquid mass transfer and flow charac- teristics in a Peirce-Smith converter. A gas mixture of CO2 and Ar was injected into a NaOH solution bath. The flow field, volumetric mass transfer coefficient per unit volume (Ak/V; where A is the contact area between phases, V is the volume, and k is the mass transfer coeffi- cient), and gas utilization ratio (t/) were then measured at different gas flow rates and blow angles. The results showed that the flow field could be divided into five regions, i.e., injection, strong loop, weak loop, splashing, and dead zone. Whereas the Ak/V of the bath increased and then decreased with increasing gas flow rate, and n steadily increased. When the converter was rotated clockwise, both Ak/F and t/increased. However, the flow condition deteriorated when the gas flow rate and blow angle were drastically increased. Therefore, these para- meters must be controlled to optimal conditions. In the proposed model, the optimal gas flow rate and blow angle were 7.5 m3.h-1 and 10°, respectively.
基金supported by Author Special Foundation of National Excellent Doctoral Dissertation of China (Grant No. 2007B41)Jiangsu Provincial Foundation of "333 Talents Engineering" of ChinaJiangsu Provincial Academic Header Foundation of Qinglan Engineering of China
文摘Baoying pumping station is a part of source pumping stations in East Route Project of South-to-North Water Transfer in China. Aiming at the characteristics of head varying, and making use of the function of pump adjustable blade, mathematical models of pumping station optimal operation are established and solved with genetic algorithm. For different total pumping discharge and total pumping volume of water per day, in order to minimize pumping station operation cost, the number and operation duties of running pump units are respectively determined at different periods of time in a day. The results indicate that the saving of electrical cost is significantly effected by the schemes of adjusting blade angles and time-varying electrical price when pumping certain water volume of water per day, and compared with conventional operation schemes (namely, the schemes of pumping station operation at design blade angles based on certain pumping discharge), the electrical cost is saved by 4.73%-31.27%. Also, compared with the electrical cost of conventional operation schemes, the electrical cost is saved by 2.03%-5.79% by the schemes of adjusting blade angles when pumping certain discharge.
基金financially supported by the National Key Research and Development Program of China(Grant Nos.2016YFC0401407 and 2018YFC0506904)the National Natural Science Foundation of China(Grant No.41971037)。
文摘The hydrochemical composition of surface water and groundwater is a key parameter for understanding the evolution of water and its quality.In particular,little is known about the impact of transferred water on surface water and groundwater.In this study,Baiyangdian Lake was selected as a typical area for extensive groundwater exploration and surface water transfer in the North China Plain.Surface water and groundwater samples were sampled in dry/wet seasons and then analyzed before/after the water transfer,respectively.Generally,surface water and groundwater are extensively hydrologically connected based on hydrochemical evidence.It was found that the hydrochemical composition of the shallow groundwater is affected by the surface water and that the water quality of the deep groundwater is stable.However,inter-aquifer recharge processes from the shallow groundwater to the deep groundwater existed in the anthropogenic region impacted with high nitrate-ion concentrations.Also,the hydrochemical composition of the surface water and groundwater was dominated by rock-weathering and evaporation-precipitation processes.Due to the existence of the deep vadose zone in the alluvial fan,Na^(+)was exchanged into soil matrices during the leakage of the surface water.In addition,the transferred water resulted in surface water with good quality,and it also played as an important recharge source to groundwater.As the most important water resource for irrigation and drinking,deep groundwater should be paid more attention in the alluvial fan with frequent water transfer and extensive groundwater exploration.
基金supported by the National Natural Science Foundation of China (Grant No 50339010)
文摘Previous research shows that there is a strong correlation between saltwater intrusion in the Yangtze Estuary and discharge at Datong. In the near future, the discharge of the Yangtze River during dry seasons will decrease due to the construction and operation of large water diversion projects, including the South-to-North Water Transfer Project, which will further exacerbate saltwater intrusion in the estuary. In this paper, a nested 1D river network model and a 2D saltwater numerical model are used to associate saltwater intrusion in the Yangtze Estuary with different values of discharge at Datong. It is concluded that 13 000 m3/s is the critical discharge at Datong for preventing saltwater intrusion and controlling the volume of water transferred by the South-to-North Water Transfer Project. Furthermore, based on the analysis of river discharge from Datong to Xuliujing and in consideration of the influence of all of the water diversion projects, operation schemes are proposed for the Eastern Route of the South-to-North Water Transfer Project for different hydrological years.
文摘We conducted a transient experimental investigation of steam–water direct contact condensation in the absence of noncondensible gas in a laboratory-scale column with the inner diameter of 325 mm and the height of 1045 mm. We applied a new analysis method for the steam state equation to analyze the molar quantity change in steam over the course of the experiment and determined the transient steam variation. We also investigated the influence of flow rates and temperatures ofcooling water on the efficiency ofsteam condensation. Our experimental results show that appropriate increasing of the cooling water flow rate can significantly accelerate the steam condensation. We achieved a rapid increase in the total volumetric heat transfer coefficient by increasing the flow rate of cooling water, which indicated a higher thermal convection between the steam and the cooling water with higher flow rates. We found that the temperature ofcooling water did not play an important role on steam condensation. This method was confirmed to be effective for rapid recovering ofsteam.
基金supported by the CAS Knowledge Innovation Key Project (Grant No.KZCX2-YW-330)the National Science Fund Fostering Talents in Basic Research to Glaciology and Geocryology (Grant No.J0630966)
文摘In order to study water transfer characteristics inside non-saturated media during methane hydrate formation and dissociation processes,water changes on the top,middle and bottom locations of experimental media during the reaction processes were continuously followed with a novel apparatus with three pF-meter sensors.Coarse sand,fine sand and loess were chosen as experimental media.It was experimentally observed that methane hydrate was easier formed inside coarse sand and fine sand than inside loess.Methane hydrate formation configuration and water transfer characteristics during methane hydrate formation processes were very different among the different non-saturated media,which were important for understanding methane hydrate formation and dissociation mechanism inside sediments in nature.
基金Supported by the Service Project of Special Institute of Chinese Academy of Sciences(No.Y55Z06)the Key Project in Frontier Science of Chinese Academy of Sciences(No.QYZDB-SSW-SMC041)+1 种基金the National Science Foundation of Jiangsu Province,China(No.BK20141268)the National Natural Science Foundation of China(No.31400486a)。
文摘Nansi Lake and Hongze Lake are both water storage lakes along the East Route of the South-to-North Water Transfer project(ESNT).Frequent changes in hydrologic properties are responsible factors for controlling the zooplankton community assemblages in both lakes,so we studied the possible influence of water transfer and environmental factors on zooplankton community structure and abundance.Zooplankton assemblages were investigated seasonally for one year in both lakes;a total of 133 and 122 zooplankton taxa were identified in Nansi Lake and Hongze Lake,respectively.The most dominant rotifer species were littoral,e.g.,Keratella tecta,Keratella valga and Lecane lunaris in Nansi Lake and Brachionus angularis,Brachionus forficula and Polyarthra vulgaris in Hongze Lake.Comparatively,Nansi Lake had a higher Shannon-Wiener diversity index value(5.13),while Hongze Lake had a higher species richness index(4.21).The average number of zooplankton across seasons in Nansi Lake(protozoa:774±63 ind./L,rotifers:4817±212 ind./L,cladocerans:896±14 ind./L,copepod:435±42 ind./L)was comparatively lower than Hongze Lake(protozoa:1238±63 ind./L,rotifers:6576±112 ind./L,cladocerans:1013±20 ind./L,copepod:534±25 ind./L).Canonical correspondence analysis identified differing environmental gradients that were most responsible for influencing zooplankton communities in the two lakes(Hongze Lake:NH4-N,total nitrogen,transparency and pH;Nansi:pH,temperature and total phosphorus).Frequent changes related to water transfer in lakes favoured the diversity of rotifers and protozoa communities.Zooplankton habitat preference,changes in community structure and opportunistic peaks and extinction of certain taxa were also observed in the study lakes.
基金financially supported by the CAS Knowledge Innovation Key Project (Grant No. KZCX2-YW- 330)the National Science Fund FosteringTalents in Basic Research to Glaciology and Geocryology (Grant No. J0630966)
文摘Gas hydrates formation and dissociation processes inside porous media are always accompanied by water transfer behavior, which is similar to the water behavior of ice freezing and thawing processes. These processes have been studied by many researchers, but all the studies are so far on the water transfer characteristics outside porous media and the water transfer characteristics inside porous media have been little known. In this study, in order to study the water transfer characteristics inside porous media during methane hydrate formation and dissociation processes, a novel apparatus with three pF-meter sensors which can detect water content changes inside porous media was applied. It was experimentally observed that methane hydrate formation processes were accompanied by water transfer from bottom to top inside porous media, however, the water behavior during hydrate dissociation processes was abnormal, for which more studies are needed to find out the real reason in our future work.
文摘The main canal of the Middle Route Project of South-to-North Water Transfer totals more than 1 240 km in length. In Henan Province and Hebei Province, there will be a section of more than 120 km passing through an expansive soils area. Expansive soils is a special kind of tenacious clay, which swells when meeting with water and shrinks when losing water. With complicated mechanical properties, it changes with the variation of water content. As a result, expansive soils become the key object of study on unsaturated soils mechanics for the project. From the status of study on unsaturated soils at home and abroad, this paper covers an analysis on stability analysis method of expansive soils slope, determination of expansive soils strength, rational design of canal slope ratio and support, and forecast of landslide for the Middle Route Project of South-to-North Water Transfer.