Objective: Better understanding of China's landscape in oncology drug research is of great significance for discovering anti-cancer drugs in future. This article differs from previous studies by focusing on Chinese ...Objective: Better understanding of China's landscape in oncology drug research is of great significance for discovering anti-cancer drugs in future. This article differs from previous studies by focusing on Chinese oncology drug research communities in co-publication networks at the institutional level. Moreover, this research aims to explore structures and behaviors of relevant research units by thematic community analysis and to address policy recommendations. Methods: This research used social network analysis to define an institutions network and to identify a community network which is characterized by thematic content. Results: A total of 675 sample articles from 2008 through 2012 were retrieved from the Science Citation Index Expanded (SCIE) database of Web of Science, and top institutions and institutional pairs are highlighted for further discussion. Meanwhile, this study revealed that institutions based in the Chinese mainland are located in a relatively central position, Taiwan's institutions are closely assembled on the side, and Hong Kong's units located in the middle of the Chinese mainland's and Taiwan's. Spatial division and institutional hierarchy are still critical barriers to research collaboration in the field of anti-cancer drugs in China. In addition, the communities focusing on hot research areas show the higher nodal degree, whereas communities giving more attention to rare research subjects are relatively marginalized to the periphery of network. Conclusions= This paper offers policy recommendations to accelerate cross-regional cooperation, such as through developing information technology and increasing investment. The brokers should focus more on outreach to other institutions. Finally, participation in topics of common interest is conducive to improved efficiency in research and development (R&D) resource allocation.展开更多
Research in Information Science and interdisciplinary areas suggested the formation of a growing network of international research collaboration.The massive transmission of COVID-19 worldwide especially after the iden...Research in Information Science and interdisciplinary areas suggested the formation of a growing network of international research collaboration.The massive transmission of COVID-19 worldwide especially after the identification of the Omicron variant could fundamentally alter the factors shaping the network's development.This study employs network analysis methods to analyze the structure of the COVID-19 research collaboration from 2020 to 2022,using two major academic publication databases and the VOSviewer software.A novel temporal view is added by examining the dynamic changes of the network,and a fractional counting method is adopted as methodological improvements to previous research.Analysis reveals that the COVID-19 research network structure has undergone substantial changes over time,as collaborating countries and regions form and re-form new clusters.Transformations in the network can be partly explained by key developments in the pandemic and other social-political events.China as one of the largest pivots in the network formed a relatively distinct cluster,with potential to develop a larger Asia-Pacific collaboration cluster based on its research impact.展开更多
目的定量测度我国城市在药学基础研究国际合作中的参与度。方法通过Web of Science数据库检索2021年1月至2023年8月我国发表的药学基础研究相关论文,提取发文机构及其所在城市,统计发文量排名前列的城市和机构的国际合作论文数量及占比...目的定量测度我国城市在药学基础研究国际合作中的参与度。方法通过Web of Science数据库检索2021年1月至2023年8月我国发表的药学基础研究相关论文,提取发文机构及其所在城市,统计发文量排名前列的城市和机构的国际合作论文数量及占比,构建全球合作网络,计算其在国际合作网络中的度、加权度、接近中心性、中介中心性和聚类系数,并采用优劣解距离(TOPSIS)法将上述指标汇总生成综合指标,比较不同城市和机构的重要性。结果北京、上海和广州的国际合作论文数量及TOPSIS得分连续3年全国排名前3,其次是南京、杭州、武汉、成都等城市;深圳是我国非港澳台地区国际合作论文占比最高的城市,但缺乏实力相对突出的机构;苏州和西安近几年的TOPSIS得分排名逐年提升。浙江大学、复旦大学、首都医科大学、上海交通大学、广州医科大学、北京大学等为国际合作中表现较好的机构。结论我国不同城市在药学研究国际合作中的参与度存在明显差异,以北京、上海、广州、南京、杭州、武汉、成都、深圳等城市表现较突出,苏州和西安也处于上升趋势。展开更多
目的通过统计数字疗法相关论文,分析数字疗法领域的全球科研合作态势。方法在文献数据库中检索数字疗法相关论文,分析各国和各机构在该领域的论文数量变化趋势,构建全球合作网络,计算社会网络指标,并采用优劣解距离法(Technique for Ord...目的通过统计数字疗法相关论文,分析数字疗法领域的全球科研合作态势。方法在文献数据库中检索数字疗法相关论文,分析各国和各机构在该领域的论文数量变化趋势,构建全球合作网络,计算社会网络指标,并采用优劣解距离法(Technique for Order Preference by Similarity to Ideal Solution,TOPSIS)评估各国和各机构在全球合作中的重要性。结果截至检索日,数字疗法领域科技论文共计3224篇,其中2014年至今达3171篇(占98.36%)。美国发文量最多(1097篇),合作对象数量(75个)和合作次数(851次)仅次于英国,因在全球合作网络中处于中心位置而获得最高TOPSIS评分。英国发文量居第二位(776篇),合作对象数量(77个)和合作次数(865次)略高于美国,TOPSIS评分略低于美国。哈佛大学、伦敦国王学院、伦敦大学学院、牛津大学和墨尔本大学的合作对象数量和合作次数均较多,TOPSIS评分较高,其中前两个机构领先优势明显。结论数字疗法领域在过去十年间快速发展,美国和英国科学研究起步较早,在该领域产出了丰硕的成果,在全球合作网络中处于中心位置;其他各国相对落后于英美。以哈佛大学、伦敦国王学院为代表的研究机构近几年产出迅速增多,推动该领域朝智能化、个性化方向发展。展开更多
为探究全球聚羟基烷酸酯(PHA)研究的学者科研合作紧密度、时空特征和未来趋势,基于文献计量可视化分析软件CiteSpace,以Web of Science(WoS)数据库为数据源,对2013—2022年收录的论文进行学者科研合作的归纳分析。研究结果表明:2013—2...为探究全球聚羟基烷酸酯(PHA)研究的学者科研合作紧密度、时空特征和未来趋势,基于文献计量可视化分析软件CiteSpace,以Web of Science(WoS)数据库为数据源,对2013—2022年收录的论文进行学者科研合作的归纳分析。研究结果表明:2013—2022年聚羟基烷酸酯研究的科研合作紧密度较小,全球范围的合作较为松散,合作关系存在明显的个人、机构和地缘指向特征,合作关系表现出“强强合作”的特征,并且合作机构以高校为主,其中实力雄厚的研究机构发文量相对也较高;发文量最多的国家依次是中国、印度、美国、意大利和西班牙,其中美国的发文量虽高,但研究者人数较少,成果基本集中于部分高产研究者。今后,研究者不仅要注重地区之间的合作,还应注意学科之间的合作,跨地域、跨学科可以增加研究驱动力。展开更多
Purpose: This study aims at identifying potential industry-university-research collaboration(IURC) partners effectively and analyzes the conditions and dynamics in the IURC process based on innovation chain theory....Purpose: This study aims at identifying potential industry-university-research collaboration(IURC) partners effectively and analyzes the conditions and dynamics in the IURC process based on innovation chain theory.Design/methodology/approach: The method utilizes multisource data, combining bibliometric and econometrics analyses to capture the core network of the existing collaboration networks and institution competitiveness in the innovation chain. Furthermore, a new identification method is constructed that takes into account the law of scientific research cooperation and economic factors.Findings: Empirical analysis of the genetic engineering vaccine field shows that through the distribution characteristics of creative technologies from different institutions, the analysis based on the innovation chain can identify the more complementary capacities among organizations.Research limitations: In this study, the overall approach is shaped by the theoretical concept of an innovation chain, a linear innovation model with specific types or stages of innovation activities in each phase of the chain, and may, thus, overlook important feedback mechanisms in the innovation process.Practical implications: Industry-university-research institution collaborations are extremely important in promoting the dissemination of innovative knowledge, enhancing the quality of innovation products, and facilitating the transformation of scientific achievements.Originality/value: Compared to previous studies, this study emulates the real conditions of IURC. Thus, the rule of technological innovation can be better revealed, the potential partners of IURC can be identified more readily, and the conclusion has more value.展开更多
本文以中国地级及以上城市单元为空间尺度,从Web of Science核心合集数据库中手工整理2019年所有城市间合作论文数据,对中国城市间科研合作网络结构特征与网络生成问题进行研究。研究发现,中国城市间科研合作网络呈现出多级分层特征,具...本文以中国地级及以上城市单元为空间尺度,从Web of Science核心合集数据库中手工整理2019年所有城市间合作论文数据,对中国城市间科研合作网络结构特征与网络生成问题进行研究。研究发现,中国城市间科研合作网络呈现出多级分层特征,具有小世界性且网络效率不高的特征。聚焦三大城市群的科研合作网络一体化分析发现,京津冀、长三角和珠三角城市群之间的科研联系邻近度要低于他们各自内部的科研联系邻近度,这意味着三大城市群的城市更多是在城市群内部建立科研联系,城市群之间的科研联系邻近度仍有待提升。进一步的QAP回归分析发现,地理邻近性、高校、经济发展水平、科研实力以及社会邻近性差异是影响中国城市间科研合作网络生成的重要因素。展开更多
目的分析全球药物合成生物学领域的科研合作态势。方法在Web of Science数据库中检索药物合成生物学相关论文,检索时间为2023年6月29日,分析全球及各国该领域发文量变化趋势;构建全球合作网络并采用优劣解距离(TOPSIS)法评估各国和各机...目的分析全球药物合成生物学领域的科研合作态势。方法在Web of Science数据库中检索药物合成生物学相关论文,检索时间为2023年6月29日,分析全球及各国该领域发文量变化趋势;构建全球合作网络并采用优劣解距离(TOPSIS)法评估各国和各机构在全球合作中的重要性;评估不同机构的合作偏好;根据通信作者发文量识别领先研究团队。结果共检索到全球范围内药物合成生物学领域科技论文1968篇,其中2013年及以后有1777篇(90.29%)。美国发文量最多(624篇),且合作对象(40个)和合作次数(283次)也最多,TOPSIS评分居全球首位。中国发文量(527篇)略低于美国,但近10年复合增长率远超美国(31.80%比6.24%),TOPSIS评分居全球第4位。丹麦技术大学、中国科学院、加州大学伯克利分校、哈佛大学、麻省理工学院的合作对象数量(≥10个)和合作次数(>20次)均较多,TOPSIS评分全球排名前5,其中前2个机构聚类系数较低(0.24,0.23)而中介中心性较高(0.23,0.15),后3个机构聚类系数低(0.38,0.30,0.18)而中介中心性相对中等(0.10,0.10,0.09)。全球共23名通信作者(团队)在此领域的论文数量≥5篇,其中美国最多(8人),中国次之(5人)。结论药物合成生物学领域在过去10年间快速发展,美国和中国在此研究领域较活跃。美国是全球合作网络的中心,中国、英国和德国也是国际合作的重要参与者。中国科学院和丹麦技术大学是连接国内外研究机构的重要桥梁,麻省理工学院、哈佛大学、加州大学伯克利分校等机构则是各自小范围研究领域的中心。展开更多
基金the University of Macao for financial support for this research by the project MYRG119(Y1-L3)-ICMS12-HYJ
文摘Objective: Better understanding of China's landscape in oncology drug research is of great significance for discovering anti-cancer drugs in future. This article differs from previous studies by focusing on Chinese oncology drug research communities in co-publication networks at the institutional level. Moreover, this research aims to explore structures and behaviors of relevant research units by thematic community analysis and to address policy recommendations. Methods: This research used social network analysis to define an institutions network and to identify a community network which is characterized by thematic content. Results: A total of 675 sample articles from 2008 through 2012 were retrieved from the Science Citation Index Expanded (SCIE) database of Web of Science, and top institutions and institutional pairs are highlighted for further discussion. Meanwhile, this study revealed that institutions based in the Chinese mainland are located in a relatively central position, Taiwan's institutions are closely assembled on the side, and Hong Kong's units located in the middle of the Chinese mainland's and Taiwan's. Spatial division and institutional hierarchy are still critical barriers to research collaboration in the field of anti-cancer drugs in China. In addition, the communities focusing on hot research areas show the higher nodal degree, whereas communities giving more attention to rare research subjects are relatively marginalized to the periphery of network. Conclusions= This paper offers policy recommendations to accelerate cross-regional cooperation, such as through developing information technology and increasing investment. The brokers should focus more on outreach to other institutions. Finally, participation in topics of common interest is conducive to improved efficiency in research and development (R&D) resource allocation.
基金the Decision and Consultancy Research of Shanghai Jiao Tong University(No.JCZXZGB-01)。
文摘Research in Information Science and interdisciplinary areas suggested the formation of a growing network of international research collaboration.The massive transmission of COVID-19 worldwide especially after the identification of the Omicron variant could fundamentally alter the factors shaping the network's development.This study employs network analysis methods to analyze the structure of the COVID-19 research collaboration from 2020 to 2022,using two major academic publication databases and the VOSviewer software.A novel temporal view is added by examining the dynamic changes of the network,and a fractional counting method is adopted as methodological improvements to previous research.Analysis reveals that the COVID-19 research network structure has undergone substantial changes over time,as collaborating countries and regions form and re-form new clusters.Transformations in the network can be partly explained by key developments in the pandemic and other social-political events.China as one of the largest pivots in the network formed a relatively distinct cluster,with potential to develop a larger Asia-Pacific collaboration cluster based on its research impact.
文摘目的定量测度我国城市在药学基础研究国际合作中的参与度。方法通过Web of Science数据库检索2021年1月至2023年8月我国发表的药学基础研究相关论文,提取发文机构及其所在城市,统计发文量排名前列的城市和机构的国际合作论文数量及占比,构建全球合作网络,计算其在国际合作网络中的度、加权度、接近中心性、中介中心性和聚类系数,并采用优劣解距离(TOPSIS)法将上述指标汇总生成综合指标,比较不同城市和机构的重要性。结果北京、上海和广州的国际合作论文数量及TOPSIS得分连续3年全国排名前3,其次是南京、杭州、武汉、成都等城市;深圳是我国非港澳台地区国际合作论文占比最高的城市,但缺乏实力相对突出的机构;苏州和西安近几年的TOPSIS得分排名逐年提升。浙江大学、复旦大学、首都医科大学、上海交通大学、广州医科大学、北京大学等为国际合作中表现较好的机构。结论我国不同城市在药学研究国际合作中的参与度存在明显差异,以北京、上海、广州、南京、杭州、武汉、成都、深圳等城市表现较突出,苏州和西安也处于上升趋势。
文摘目的通过统计数字疗法相关论文,分析数字疗法领域的全球科研合作态势。方法在文献数据库中检索数字疗法相关论文,分析各国和各机构在该领域的论文数量变化趋势,构建全球合作网络,计算社会网络指标,并采用优劣解距离法(Technique for Order Preference by Similarity to Ideal Solution,TOPSIS)评估各国和各机构在全球合作中的重要性。结果截至检索日,数字疗法领域科技论文共计3224篇,其中2014年至今达3171篇(占98.36%)。美国发文量最多(1097篇),合作对象数量(75个)和合作次数(851次)仅次于英国,因在全球合作网络中处于中心位置而获得最高TOPSIS评分。英国发文量居第二位(776篇),合作对象数量(77个)和合作次数(865次)略高于美国,TOPSIS评分略低于美国。哈佛大学、伦敦国王学院、伦敦大学学院、牛津大学和墨尔本大学的合作对象数量和合作次数均较多,TOPSIS评分较高,其中前两个机构领先优势明显。结论数字疗法领域在过去十年间快速发展,美国和英国科学研究起步较早,在该领域产出了丰硕的成果,在全球合作网络中处于中心位置;其他各国相对落后于英美。以哈佛大学、伦敦国王学院为代表的研究机构近几年产出迅速增多,推动该领域朝智能化、个性化方向发展。
文摘为探究全球聚羟基烷酸酯(PHA)研究的学者科研合作紧密度、时空特征和未来趋势,基于文献计量可视化分析软件CiteSpace,以Web of Science(WoS)数据库为数据源,对2013—2022年收录的论文进行学者科研合作的归纳分析。研究结果表明:2013—2022年聚羟基烷酸酯研究的科研合作紧密度较小,全球范围的合作较为松散,合作关系存在明显的个人、机构和地缘指向特征,合作关系表现出“强强合作”的特征,并且合作机构以高校为主,其中实力雄厚的研究机构发文量相对也较高;发文量最多的国家依次是中国、印度、美国、意大利和西班牙,其中美国的发文量虽高,但研究者人数较少,成果基本集中于部分高产研究者。今后,研究者不仅要注重地区之间的合作,还应注意学科之间的合作,跨地域、跨学科可以增加研究驱动力。
基金funded by National Natural Science Foundation of China (Grant No. 71704170)the China Postdoctoral Science Foundation funded project (Grant No. 2016M590124)the Youth Innovation Promotion Association, CAS (Grant No. 2016159)
文摘Purpose: This study aims at identifying potential industry-university-research collaboration(IURC) partners effectively and analyzes the conditions and dynamics in the IURC process based on innovation chain theory.Design/methodology/approach: The method utilizes multisource data, combining bibliometric and econometrics analyses to capture the core network of the existing collaboration networks and institution competitiveness in the innovation chain. Furthermore, a new identification method is constructed that takes into account the law of scientific research cooperation and economic factors.Findings: Empirical analysis of the genetic engineering vaccine field shows that through the distribution characteristics of creative technologies from different institutions, the analysis based on the innovation chain can identify the more complementary capacities among organizations.Research limitations: In this study, the overall approach is shaped by the theoretical concept of an innovation chain, a linear innovation model with specific types or stages of innovation activities in each phase of the chain, and may, thus, overlook important feedback mechanisms in the innovation process.Practical implications: Industry-university-research institution collaborations are extremely important in promoting the dissemination of innovative knowledge, enhancing the quality of innovation products, and facilitating the transformation of scientific achievements.Originality/value: Compared to previous studies, this study emulates the real conditions of IURC. Thus, the rule of technological innovation can be better revealed, the potential partners of IURC can be identified more readily, and the conclusion has more value.
文摘本文以中国地级及以上城市单元为空间尺度,从Web of Science核心合集数据库中手工整理2019年所有城市间合作论文数据,对中国城市间科研合作网络结构特征与网络生成问题进行研究。研究发现,中国城市间科研合作网络呈现出多级分层特征,具有小世界性且网络效率不高的特征。聚焦三大城市群的科研合作网络一体化分析发现,京津冀、长三角和珠三角城市群之间的科研联系邻近度要低于他们各自内部的科研联系邻近度,这意味着三大城市群的城市更多是在城市群内部建立科研联系,城市群之间的科研联系邻近度仍有待提升。进一步的QAP回归分析发现,地理邻近性、高校、经济发展水平、科研实力以及社会邻近性差异是影响中国城市间科研合作网络生成的重要因素。
文摘目的分析全球药物合成生物学领域的科研合作态势。方法在Web of Science数据库中检索药物合成生物学相关论文,检索时间为2023年6月29日,分析全球及各国该领域发文量变化趋势;构建全球合作网络并采用优劣解距离(TOPSIS)法评估各国和各机构在全球合作中的重要性;评估不同机构的合作偏好;根据通信作者发文量识别领先研究团队。结果共检索到全球范围内药物合成生物学领域科技论文1968篇,其中2013年及以后有1777篇(90.29%)。美国发文量最多(624篇),且合作对象(40个)和合作次数(283次)也最多,TOPSIS评分居全球首位。中国发文量(527篇)略低于美国,但近10年复合增长率远超美国(31.80%比6.24%),TOPSIS评分居全球第4位。丹麦技术大学、中国科学院、加州大学伯克利分校、哈佛大学、麻省理工学院的合作对象数量(≥10个)和合作次数(>20次)均较多,TOPSIS评分全球排名前5,其中前2个机构聚类系数较低(0.24,0.23)而中介中心性较高(0.23,0.15),后3个机构聚类系数低(0.38,0.30,0.18)而中介中心性相对中等(0.10,0.10,0.09)。全球共23名通信作者(团队)在此领域的论文数量≥5篇,其中美国最多(8人),中国次之(5人)。结论药物合成生物学领域在过去10年间快速发展,美国和中国在此研究领域较活跃。美国是全球合作网络的中心,中国、英国和德国也是国际合作的重要参与者。中国科学院和丹麦技术大学是连接国内外研究机构的重要桥梁,麻省理工学院、哈佛大学、加州大学伯克利分校等机构则是各自小范围研究领域的中心。