期刊文献+
共找到24,304篇文章
< 1 2 250 >
每页显示 20 50 100
Straw return increases crop production by improving soil organic carbon sequestration and soil aggregation in a long-term wheat-cotton cropping system 被引量:2
1
作者 Changqin Yang Xiaojing Wang +6 位作者 Jianan Li Guowei Zhang Hongmei Shu Wei Hu Huanyong Han Ruixian Liu Zichun Guo 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第2期669-679,共11页
Straw return is a promising strategy for managing soil organic carbon(SOC)and improving yield stability.However,the optimal straw return strategy for sustainable crop production in the wheat(Triticum aestivum L.)-cott... Straw return is a promising strategy for managing soil organic carbon(SOC)and improving yield stability.However,the optimal straw return strategy for sustainable crop production in the wheat(Triticum aestivum L.)-cotton(Gossypium hirsutum L.)cropping system remains uncertain.The objective of this study was to quantify the long-term(10 years)impact of carbon(C)input on SOC sequestration,soil aggregation and crop yields in a wheat-cotton cropping system in the Yangtze River Valley,China.Five treatments were arranged with a single-factor randomized design as follows:no straw return(Control),return of wheat straw only(Wt),return of cotton straw only(Ct),return of 50%wheat and 50%cotton straw(Wh-Ch)and return of 100%wheat and 100%cotton straw(Wt-Ct).In comparison to the Control,the SOC content increased by 8.4 to 20.2%under straw return.A significant linear positive correlation between SOC sequestration and C input(1.42-7.19 Mg ha^(−1)yr^(−1))(P<0.05)was detected.The percentages of aggregates of sizes>2 and 1-2 mm at the 0-20 cm soil depth were also significantly elevated under straw return,with the greatest increase of the aggregate stability in the Wt-Ct treatment(28.1%).The average wheat yields increased by 12.4-36.0%and cotton yields increased by 29.4-73.7%,and significantly linear positive correlations were also detected between C input and the yields of wheat and cotton.The average sustainable yield index(SYI)reached a maximum value of 0.69 when the C input was 7.08 Mg ha^(−1)yr^(−1),which was close to the maximum value(SYI of 0.69,C input of 7.19 Mg ha^(−1)yr^(-1))in the Wt-Ct treatment.Overall,the return of both wheat and cotton straw was the best strategy for improving SOC sequestration,soil aggregation,yields and their sustainability in the wheat-cotton rotation system. 展开更多
关键词 straw return crop yields SOC soil aggregates wheat-cotton cropping system
下载PDF
Optimization of inter-seasonal nitrogen allocation increases yield and resource-use efficiency in a water-limited wheat-maize cropping system in the North China Plain
2
作者 Xiaonan Zhou Chenghang Du +7 位作者 Haoran Li Zhencai Sun Yifei Chen Zhiqiang Gao Zhigan Zhao Yinghua Zhang Zhimin Wang Ying Liu 《The Crop Journal》 SCIE CSCD 2024年第3期907-914,共8页
Winter wheat–summer maize cropping system in the North China Plain often experiences droughtinduced yield reduction in the wheat season and rainwater and nitrogen(N)fertilizer losses in the maize season.This study ai... Winter wheat–summer maize cropping system in the North China Plain often experiences droughtinduced yield reduction in the wheat season and rainwater and nitrogen(N)fertilizer losses in the maize season.This study aimed to identify an optimal interseasonal water-and N-management strategy to alleviate these losses.Four ratios of allocation of 360 kg N ha^(-1)between the wheat and maize seasons under one-time presowing root-zone irrigation(W0)and additional jointing and anthesis irrigation(W2)in wheat and one irrigation after maize sowing were set as follows:N1(120:240),N2(180:180),N3(240:120)and N4(300:60).The results showed that under W0,the N3 treatment produced the highest annual yield,crop water productivity(WPC),and nitrogen partial factor productivity(PFPN).Increased N allocation in wheat under W0 improved wheat yield without affecting maize yield,as surplus nitrate after wheat harvest was retained in the topsoil layers and available for the subsequent maize.Under W2,annual yield was largest in the N2 treatment.The risk of nitrate leaching increased in W2 when N application rate in wheat exceeded that of the N2 treatment,especially in the wet year.Compared to W2N2,the W0N3 maintained 95.2%grain yield over two years.The WPCwas higher in the W0 treatment than in the W2 treatment.Therefore,following limited total N rate,an appropriate fertilizer N transfer from maize to wheat season had the potential of a“triple win”for high annual yield,WPCand PFPN in a water-limited wheat–maize cropping system. 展开更多
关键词 cropping system Water-saving irrigation North China Plain Nitrogen optimization Sustainable intensification
下载PDF
The microbial community,nutrient supply and crop yields differ along a potassium fertilizer gradient under wheat-maize double-cropping systems
3
作者 Zeli Li Fuli Fang +10 位作者 Liang Wu Feng Gao Mingyang Li Benhang Li Kaidi Wu Xiaomin Hu Shuo Wang Zhanbo Wei Qi Chen Min Zhang Zhiguang Liu 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第10期3592-3609,共18页
Soil microorganisms play critical roles in ecosystem function.However,the relative impact of the potassium(K)fertilizer gradient on the microbial community in wheat-maize double-cropping systems remains unclear.In thi... Soil microorganisms play critical roles in ecosystem function.However,the relative impact of the potassium(K)fertilizer gradient on the microbial community in wheat-maize double-cropping systems remains unclear.In this long-term field experiment(2008-2019),we researched bacterial and fungal diversity,composition,and community assemblage in the soil along a K fertilizer gradient in the wheat season(K0,no K fertilizer;K1,45 kg ha^(-1) K_(2)O;K_(2),90 kg ha^(-1)K_(2)O;K3,135 kg ha^(-1)K_(2)O)and in the maize season(K0,no K fertilizer;K_(1),150 kg ha^(-1) K_(2)O;K_(2),300 kg ha^(-1)K_(2)O;K_(3),450 kg ha^(-1)K_(2)O)using bacterial 16S rRNA and fungal internally transcribed spacer(ITS)data.We observed that environmental variables,such as mean annual soil temperature(MAT)and precipitation,available K,ammonium,nitrate,and organic matter,impacted the soil bacterial and fungal communities,and their impacts varied with fertilizer treatments and crop species.Furthermore,the relative abundance of bacteria involved in soil nutrient transformation(phylum Actinobacteria and class Alphaproteobacteria)in the wheat season was significantly increased compared to the maize season,and the optimal K fertilizer dosage(K2 treatment)boosted the relative bacterial abundance of soil nutrient transformation(genus Lactobacillus)and soil denitrification(phylum Proteobacteria)bacteria in the wheat season.The abundance of the soil bacterial community promoting root growth and nutrient absorption(genus Herbaspirillum)in the maize season was improved compared to the wheat season,and the K2 treatment enhanced the bacterial abundance of soil nutrient transformation(genus MND1)and soil nitrogen cycling(genus Nitrospira)genera in the maize season.The results indicated that the bacterial and fungal communities in the double-cropping system exhibited variable sensitivities and assembly mechanisms along a K fertilizer gradient,and microhabitats explained the largest amount of the variation in crop yields,and improved wheat?maize yields by 11.2-22.6 and 9.2-23.8%with K addition,respectively.These modes are shaped contemporaneously by the different meteorological factors and soil nutrient changes in the K fertilizer gradients. 展开更多
关键词 potassium fertilizer gradient microbial community wheat-maize double cropping climate change yield
下载PDF
Impact on Soil Organic C and Total Soil N from Cool- and Warm-Season Legumes Used in a Green Manure-Forage Cropping System
4
作者 Clark B. Neely Francis M. Rouquette Jr. +3 位作者 Cristine L.S. Morgan Frank M. Hons William L. Rooney Gerald R. Smith 《Agricultural Sciences》 2024年第3期333-357,共25页
Annual forage legumes are important components of livestock production systems in East Texas and the southeastern US. Forage legumes contribute nitrogen (N) to cropping systems through biological N fixation, and their... Annual forage legumes are important components of livestock production systems in East Texas and the southeastern US. Forage legumes contribute nitrogen (N) to cropping systems through biological N fixation, and their seasonal biomass production can be managed to complement forage grasses. Our research objectives were to evaluate both warm- and cool-season annual forage legumes as green manure for biomass, N content, ability to enhance soil organic carbon (SOC) and soil N, and impact on post season forage grass crops. Nine warm-season forage legumes (WSL) were spring planted and incorporated as green manure in the fall. Forage rye (Secale cereale L.) was planted following the incorporation of WSL treatments. Eight cool-season forage legumes (CSL) were fall planted in previously fallow plots and incorporated as green manure in late spring. Sorghum-sudangrass (Sorghum bicolor x Sorghum bicolor var. sudanense) was planted over all treatments in early summer after forage rye harvest and incorporation of CSL treatments. Sorghum-sudangrass was harvested in June, August and September, and treatments were evaluated for dry matter and N concentration. Soil cores were taken from each plot, split into depths of 0 to 15, 15 to 30 and 30 to 60 cm, and soil C and N were measured using combustion analysis. Nylon mesh bags containing plant samples were buried at 15 cm and used to evaluate decomposition rate of above ground legume biomass, including change in C and N concentrations. Mungbean (Vigna radiata L. [Wilczek]) had the highest shoot biomass yield (6.24 t DM ha<sup>-1</sup>) and contributed the most total N (167 kg∙ha<sup>-1</sup>) and total C (3043 kg∙ha<sup>-1</sup>) of the WSL tested. Decomposition rate of WSL biomass was rapid in the first 10 weeks and very slow afterward. Winter pea (Pisum sativum L. spp. sativum), arrow leaf clover (Trifolium vesiculosum Savi.), and crimson clover (Trifolium incarnatum L.) were the most productive CSL in this trial. Austrian winter pea produced 8.41 t DM ha<sup>-1</sup> with a total N yield of 319 kg N ha<sup>-1</sup> and total C production of 3835 kg C ha<sup>-1</sup>. The WSL treatments had only small effects on rye forage yield and N concentration, possibly due to mineralization of N from a large SOC pool already in place. The CSL treatments also had only minimal effects on sorghum-sudangrass forage production. Winter pea, arrow leaf and crimson clover were productive cool season legumes and could be useful as green manure crops. Mungbean and cowpea (Vigna unguiculata [L.] Walp.) were highly productive warm season legumes but may include more production risk in green manure systems due to soil moisture competition. 展开更多
关键词 Annual Legumes Soil N Soil Organic C Green Manure Deer Browse Forage cropping Systems
下载PDF
Satellite Multi-Temporal Data and Cropping Pattern Approach for Green Gram Crop Management in the Lower Midland Zone IV and V in Kenya
5
作者 Kalekye Hilda Manzi Shadrack Ngene Joseph P. Gweyi-Onyango 《Advances in Remote Sensing》 2024年第2期41-71,共31页
Creation of a spectral signature reflectance data, which aids in the identification of the crops is important in determining size and location crop fields. Therefore, we developed a spectral signature reflectance for ... Creation of a spectral signature reflectance data, which aids in the identification of the crops is important in determining size and location crop fields. Therefore, we developed a spectral signature reflectance for the vegetative stage of the green gram (Vigna. radiata L.) over 5 years (2020, 2018, 2017, 2015, and 2013) for agroecological zone IV and V in Kenya. The years chosen were those whose satellite resolution data was available for the vegetative stage of crop growth in the short rain season (October, November, December (OND)). We used Landsat 8 OLI satellite imagery in this study. Cropping pattern data for the study area were evaluated by calculating the Top of Atmosphere reflectance. Farms geo-referencing, along with field data collection, was undertaken to extract Top of Atmosphere reflectance for bands 2, 3, 4 and 7. We also carried a spectral similarity assessment on the various cropping patterns. The spectral reflectance ranged from 0.07696 - 0.09632, 0.07466 - 0.09467, 0.0704047 - 0.12188,0.19822 - 0.24387, 0.19269 - 0.26900, and 0.11354 - 0.20815 for bands 2, 3, 4, 5, 6, and 7 for green gram, respectively. The results showed a dissimilarity among the various cropping patterns. The lowest dissimilarity index was 0.027 for the maize (Zea mays L.) bean (Phaseolus vulgaris) versus the maize-pigeon pea (Cajanus cajan) crop, while the highest dissimilarity index was 0.443 for the maize bean versus the maize bean and cowpea cropping patterns. High crop dissimilarities experienced across the cropping pattern through these spectral reflectance values confirm that the green gram was potentially identifiable. The results can be used in crop type identification in agroecological lower midland zone IV and V for mung bean management. This study therefore suggests that use of reflectance data in remote sensing of agricultural ecosystems would aid in planning, management, and crop allocation to different ecozones. 展开更多
关键词 MULTI-TEMPORAL cropping Patterns Spectral Signatures Landsat 8 crop Identification
下载PDF
Several Cotton Rotation and Intercropping Systems in Cotton Planting Area of Eastern Henan Province
6
作者 Yubei DU Zongyan CHU +6 位作者 Yuxuan TANG Mingjuan CHANG Chao WU Yanan ZHAN Suling LIU Xiaohong SI Yuqin ZHOU 《Plant Diseases and Pests》 2024年第4期40-42,共3页
In recent years,the area dedicated to cotton cultivation in eastern Henan Province has experienced a continuous decline.Developing efficient multi-cropping systems for cotton and increasing the multiple cropping index... In recent years,the area dedicated to cotton cultivation in eastern Henan Province has experienced a continuous decline.Developing efficient multi-cropping systems for cotton and increasing the multiple cropping index represent effective strategies to stabilize the cotton planting area and enhance the income of cotton farmers.This paper presents an overview of intercropping systems and the benefits associated with cotton rotation and intercropping practices.Specifically,it discusses the"early maturing cotton-wheat"rotation system,the"cotton-watermelon"intercropping system,the"cotton-Dutch bean"intercropping system,and the"early maturing cotton-peanut-garlic"intercropping system. 展开更多
关键词 COTTON INTERcropping crop rotation Wheat Dutch bean WATERMELON
下载PDF
Effects of Continuous Cropping on Soil Microbial Flora and Research Progress of Continuous Cropping Obstacle Reduction Techniques
7
作者 Qingmei LI Zebin CHEN +6 位作者 Yue YAN Shengguang XU Zhiwei FAN Li LIN Song JIN Tianfang WANG Zaixiang ZHU 《Agricultural Biotechnology》 2024年第5期49-54,共6页
Continuous cropping can bring economic benefits in a short time and meet the growing demand of agricultural products such as grain,but long-term continuous cropping will accelerate soil degradation,lead to the reducti... Continuous cropping can bring economic benefits in a short time and meet the growing demand of agricultural products such as grain,but long-term continuous cropping will accelerate soil degradation,lead to the reduction of crop yield and the increase of disease rate,and destroy the balance of soil microbial structure.Therefore,it is not conducive to the sustainable development of soil ecosystem.In this paper,the problems caused by continuous cropping,such as imbalance of soil microbial flora,decrease of biodiversity,accumulation of root exudates and their effects on soil fertility and crop growth,were summarized,and some measures were suggested to alleviate the obstacles of continuous cropping,such as reasonable rotation,adjustment of intercropping planting mode and application of biological fertilizers.Moreover,the paper also looked forward to the development trend of continuous cropping obstacle reduction techniques,including the integration and application of biological techniques,the promotion of green ecological techniques and the application of intelligent management system.This study provides theoretical basis and technical support for the research of continuous cropping obstacle reduction techniques and promote the healthy and sustainable development of modern agriculture. 展开更多
关键词 SOIL MICROORGANISM Continuous cropping obstacle Reduction technique Soil improvement
下载PDF
Impact of Continuous Cropping on Soil Phenolic Acid Substances and Research Progress on Continuous Cropping Obstacle Reduction Techniques
8
作者 Yue YAN Zebin CHEN +6 位作者 Qingmei LI Shengguang XU Zhiwei FAN Li LIN Song JIN Tianfang WANG Zaixiang ZHU 《Agricultural Biotechnology》 2024年第4期57-62,共6页
At present,long-term continuous cropping in agricultural production has formed a relatively common development trend.With the increase of continuous cropping years,soil phenolic acids are also affected to varying degr... At present,long-term continuous cropping in agricultural production has formed a relatively common development trend.With the increase of continuous cropping years,soil phenolic acids are also affected to varying degrees.This paper summarized the effects of continuous cropping on soil phenolic acids and the research progress of continuous cropping obstacle reduction techniques,aiming at providing theoretical basis and technical support for the research of continuous cropping obstacle reduction techniques and promoting the healthy and sustainable development of modern agriculture. 展开更多
关键词 SOIL Phenolic acid Continuous cropping obstacle Reduction technique soil improvement
下载PDF
Research Progress on Effects of Continuous Cropping on Soil Microbial Florae and Its Restoration
9
作者 Zaixiang ZHU Zebin CHEN +5 位作者 Shengguang XU Zhiwei FAN Li LIN Tianfang WANG Qingmei LI Yue YAN 《Agricultural Biotechnology》 2024年第2期75-80,共6页
Continuous cropping has become a common form of agricultural production at present, but with the increase of continuous cropping years, continuous cropping obstacles such as soil-borne diseases and plant growth potent... Continuous cropping has become a common form of agricultural production at present, but with the increase of continuous cropping years, continuous cropping obstacles such as soil-borne diseases and plant growth potential decline are becoming more and more common. At present, the causes of continuous cropping obstacles and continuous cropping restoration have become a hot issue in agricultural research. This paper summarized the effects of continuous cropping obstacles on soil microbial community structure and main technical methods to repair continuous cropping obstacles, such as agricultural measure management, microbial balance adjustment and soil improvement, aiming to provide theoretical reference for protecting the sustainable utilization of soil ecosystem and ensuring the stability of crop production. 展开更多
关键词 Continuous cropping obstacle Rhizosphere soil MICROORGANISM Soil remediation Soil improvement
下载PDF
基于AquaCrop和WinSRFR组合的夏玉米沟灌方案优化
10
作者 聂卫波 马云鹏 +1 位作者 冯正江 李格 《农业工程学报》 EI CAS CSCD 北大核心 2024年第18期51-61,共11页
确定作物合理的灌溉制度和灌水技术要素组合是科学管理农业水资源的基础,可有效缓解水资源短缺矛盾和保障区域粮食安全。基于此,该研究利用在陕西省杨陵区(2022年)和武功县(2017年)进行的夏玉米田间试验,分别对AquaCrop模型和WinSRFR软... 确定作物合理的灌溉制度和灌水技术要素组合是科学管理农业水资源的基础,可有效缓解水资源短缺矛盾和保障区域粮食安全。基于此,该研究利用在陕西省杨陵区(2022年)和武功县(2017年)进行的夏玉米田间试验,分别对AquaCrop模型和WinSRFR软件进行校准和验证,确定了研究区夏玉米典型水文年(丰水年、平水年和干旱年)的灌溉制度;通过反演沟灌土壤入渗参数和田面糙率,结合确定的灌溉制度,优化了沟灌灌水技术要素组合(入沟流量和灌水时间),并量化评价了优化灌溉制度和灌水技术要素组合对夏玉米的增产能力。结果表明,AquaCrop模型能准确模拟研究区夏玉米生长过程,其中产量模拟值与实测值的相对误差绝对值均值分别为1.85%(校准)和7.47%(验证);研究区夏玉米丰水年(灌浆期)和平水年(拔节期)需灌水1次,干旱年(拔节期和灌浆期)需灌水2次,单次灌水量均为55 mm;反演所得研究区沟灌土壤入渗参数k和α取值范围分别为是55.416~98.437 mm/h^(α)和0.351~0.858,田面糙率n均值为0.056;合理的入沟流量和停水时间取值范围分别为2.2~3.3 L/s和35~16 min,可获得高灌水质量(综合灌水质量指标C_(i)≥85%);以2022年夏玉米优化的灌溉制度和灌水技术要素优化组合为基础,模拟所得夏玉米产量为7.819 t/hm^(2),与无灌溉(5.972 t/hm^(2))、现状条件(7.424 t/hm^(2))和仅对灌溉制度优化(7.659 t/hm^(2))情景相比较,分别提高了30.9%、5.3%和2.1%,且所需灌水量较现状条件可减少59 mm。研究结果可为研究区域夏玉米灌溉制度制定和沟灌方案设计提供理论基础和技术支撑。 展开更多
关键词 作物 模型 沟灌 优化 入沟流量 停水时间 灌水质量
下载PDF
Significant reduction of ammonia emissions while increasing crop yields using the 4R nutrient stewardship in an intensive cropping system 被引量:2
11
作者 ZHANG Chong WANG Dan-dan +6 位作者 ZHAO Yong-jian XIAO Yu-lin CHEN Huan-xuan LIU He-pu FENG Li-yuan YU Chang-hao JU Xiao-tang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第6期1883-1895,共13页
Ammonia (NH_3) emissions should be mitigated to improve environmental quality.Croplands are one of the largest NH_3sources,they must be managed properly to reduce their emissions while achieving the target yields.Here... Ammonia (NH_3) emissions should be mitigated to improve environmental quality.Croplands are one of the largest NH_3sources,they must be managed properly to reduce their emissions while achieving the target yields.Herein,we report the NH_3 emissions,crop yield and changes in soil fertility in a long-term trial with various fertilization regimes,to explore whether NH_3 emissions can be significantly reduced using the 4R nutrient stewardship (4Rs),and its interaction with the organic amendments (i.e.,manure and straw) in a wheat–maize rotation.Implementing the 4Rs significantly reduced NH_3 emissions to 6 kg N ha~(–1) yr~(–1) and the emission factor to 1.72%,without compromising grain yield (12.37 Mg ha~(–1) yr~(–1))and soil fertility (soil organic carbon of 7.58 g kg~(–1)) compared to the conventional chemical N management.When using the 4R plus manure,NH_3 emissions (7 kg N ha~(–1) yr~(–1)) and the emission factor (1.74%) were as low as 4Rs,and grain yield and soil organic carbon increased to 14.79 Mg ha~(–1) yr~(–1) and 10.09 g kg~(–1),respectively.Partial manure substitution not only significantly reduced NH_3 emissions but also increased crop yields and improved soil fertility,compared to conventional chemical N management.Straw return exerted a minor effect on NH_3 emissions.These results highlight that 4R plus manure,which couples nitrogen and carbon management can help achieve both high yields and low environmental costs. 展开更多
关键词 ammonia emission crop yield 4R nutrient stewardship partial manure substitution winter wheat–summer maize cropping system
下载PDF
Maize-soybean relay cropping increases soybean yield synergistically by extending the post-anthesis leaf stay-green period and accelerating grain filling 被引量:2
12
作者 Yiling Li Ping Chen +7 位作者 Zhidan Fu Kai Luo Ping Lin Chao Gao Shanshan Liu Tian Pu Taiwen Yong Wenyu Yang 《The Crop Journal》 SCIE CSCD 2023年第6期1921-1930,共10页
Relay cropping of Poaceae and Fabaceae promotes high yield and land-use efficiency by allowing a double harvest.However,it is difficult to increase yield synergistically because of the reduced photosynthetic abilities... Relay cropping of Poaceae and Fabaceae promotes high yield and land-use efficiency by allowing a double harvest.However,it is difficult to increase yield synergistically because of the reduced photosynthetic abilities of legume leaves under the shade of graminoids.Leaf photosynthetic capacity in relay cropping systems is associated with ecological niche differentiation and photosynthetic compensation after restoration of normal light.We conducted a field experiment in southwest China in 2020–2021 to evaluate the effects of three cropping patterns:maize–soybean relay cropping(IMS),monoculture maize(MM),and monoculture soybean(SS),and N application levels:no N application(NN:0 kg N ha^(−1)),reduced N(RN:180 kg N ha^(−1)),and conventional N(CN:240 kg N ha^(−1)).Compared to monocropping,relay cropping increased the stay-green traits of maize and soybean by 13%and 89%,respectively.Relay cropping prolonged the leaf stay-green duration in the maize and soybean lag phase by almost 4 and 8 days,respectively.Relay cropping maize(IM)increased the leaf area index(LAI)by 79.4%to 88.5%under NN and 55.5%to 148%under RN.Relay cropping soybean(IS)increased the LAI from 115%to 437%at days 40 to 50 after anthesis.IM increased yield by 65.6%.IS increased yield by 9.7%.HI and system yield were at their highest values under RN.In the relay cropping system,reduced N application extended green leaf duration,increased photosynthesis inside the canopy at multiple levels,ultimately increases soybean yield synergistically. 展开更多
关键词 Leaf stay-green Nitrogen reduction Maize-soybean relay cropping Yield
下载PDF
Integrating artificial intelligence and high-throughput phenotyping for crop improvement 被引量:1
13
作者 Mansoor Sheikh Farooq Iqra +3 位作者 Hamadani Ambreen Kumar A Pravin Manzoor Ikra Yong Suk Chung 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第6期1787-1802,共16页
Crop improvement is crucial for addressing the global challenges of food security and sustainable agriculture.Recent advancements in high-throughput phenotyping(HTP)technologies and artificial intelligence(AI)have rev... Crop improvement is crucial for addressing the global challenges of food security and sustainable agriculture.Recent advancements in high-throughput phenotyping(HTP)technologies and artificial intelligence(AI)have revolutionized the field,enabling rapid and accurate assessment of crop traits on a large scale.The integration of AI and machine learning algorithms with HTP data has unlocked new opportunities for crop improvement.AI algorithms can analyze and interpret large datasets,and extract meaningful patterns and correlations between phenotypic traits and genetic factors.These technologies have the potential to revolutionize plant breeding programs by providing breeders with efficient and accurate tools for trait selection,thereby reducing the time and cost required for variety development.However,further research and collaboration are needed to overcome the existing challenges and fully unlock the power of HTP and AI in crop improvement.By leveraging AI algorithms,researchers can efficiently analyze phenotypic data,uncover complex patterns,and establish predictive models that enable precise trait selection and crop breeding.The aim of this review is to explore the transformative potential of integrating HTP and AI in crop improvement.This review will encompass an in-depth analysis of recent advances and applications,highlighting the numerous benefits and challenges associated with HTP and AI. 展开更多
关键词 artificial intelligence crop improvement data analysis high-throughput phenotyping machine learning precision agriculture trait selection
下载PDF
Effects of Allelochemicals on Root Growth and Pod Yield in Response to Continuous Cropping Obstacle of Peanut
14
作者 Zhaohui Tang Feng Guo +8 位作者 Li Cui Qingkai Li Jialei Zhang Jianguo Wang Sha Yang Jingjing Meng Xinguo Li Ping Liu Shubo Wan 《Phyton-International Journal of Experimental Botany》 SCIE 2023年第1期17-34,共18页
Continuous cropping(CC)obstacle is a major threat in legume crops production;however,the underlying mechanisms concerning the roles allelochemicals play in CC obstacle are poorly understood.The current 2-year study wa... Continuous cropping(CC)obstacle is a major threat in legume crops production;however,the underlying mechanisms concerning the roles allelochemicals play in CC obstacle are poorly understood.The current 2-year study was conducted to investigate the effects of different kinds and concentrations of allelochemicals,p-hydroxybenzoic acid(H),cinnamic acid(C),phthalic acid(P),and their mixtures(M)on peanut root growth and productivity in response to CC obstacle.Treatment with H,C,P,and M significantly decreased the plant height,dry weight of the leaves and stems,number of branches,and length of the lateral stem compared with control.Exogenous application of H,C,P,and M inhibited the peanut root growth as indicated by the decreased root morphological characters.The allelochemicals also induced the cell membrane oxidation even though the antioxidant enzymes activities were significantly increased in peanut roots.Meanwhile,treatment with H,C,P,and M reduced the contents of total soluble sugar and total soluble protein.Analysis of ATPase activity,nitrate reductase activity,and root system activity revealed that the inhibition effects of allelochemicals on peanut roots might be due to the decrease in activities of ATPase and NR,and the inhibition of root system.Consequently,allelochemicals significantly decreased the pod yield of peanut compared with control.Our results demonstrate that allelochemicals play a dominant role in CC obstacle-induced peanut growth inhibition and yield reduction through damaging the root antioxidant system,unbalancing the osmolytes accumulation,and decreasing the activities of root-related enzymes. 展开更多
关键词 PEANUT continuous cropping obstacle root growth pod yield
下载PDF
Estimating Carbon Capture Potential of Fallow Weeds in Rice Cropping Systems
15
作者 Ge Chen Yuling Kang +2 位作者 Fangbo Cao Jiana Chen Min Huang 《Phyton-International Journal of Experimental Botany》 SCIE 2023年第1期71-77,共7页
Weeds occurred during the fallow season can well perform the function of carbon(C)capture due to receiving little human disturbance.This study aimed to evaluate the C capture potential of fallow weeds in rice(Oryza sa... Weeds occurred during the fallow season can well perform the function of carbon(C)capture due to receiving little human disturbance.This study aimed to evaluate the C capture potential of fallow weeds in rice(Oryza sativa L.)cropping systems.A six-region,two-year on-farm investigation and a three-year tillage experiment were conducted to estimate C capture in fallow weeds in rice cropping systems.The on-farm investigation showed that the average mean C capture by fallow weeds across six regions and two years reached 112 g m^(-2).The tillage experiment indicated that no-tillage practices increased C capture by fallow weeds by 80%on average as compared with conventional tillage.The results of this study not only contribute to an understanding of C capture potential of fallow weeds in rice cropping systems,but also provide a reference for including fallow weeds in the estimation of vegetative C sink. 展开更多
关键词 Carbon cycling fallow weeds NO-TILLAGE rice cropping system vegetative carbon sink
下载PDF
A dual-RPA based lateral flow strip for sensitive,on-site detection of CP4-EPSPS and Cry1Ab/Ac genes in genetically modified crops 被引量:1
16
作者 Jinbin Wang Yu Wang +7 位作者 Xiuwen Hu Yifan Chen Wei Jiang Xiaofeng Liu Juan Liu Lemei Zhu Haijuan Zeng Hua Liu 《Food Science and Human Wellness》 SCIE CSCD 2024年第1期183-190,共8页
Traditional transgenic detection methods require high test conditions and struggle to be both sensitive and efficient.In this study,a one-tube dual recombinase polymerase amplification(RPA)reaction system for CP4-EPSP... Traditional transgenic detection methods require high test conditions and struggle to be both sensitive and efficient.In this study,a one-tube dual recombinase polymerase amplification(RPA)reaction system for CP4-EPSPS and Cry1Ab/Ac was proposed and combined with a lateral flow immunochromatographic assay,named“Dual-RPA-LFD”,to visualize the dual detection of genetically modified(GM)crops.In which,the herbicide tolerance gene CP4-EPSPS and the insect resistance gene Cry1Ab/Ac were selected as targets taking into account the current status of the most widespread application of insect resistance and herbicide tolerance traits and their stacked traits.Gradient diluted plasmids,transgenic standards,and actual samples were used as templates to conduct sensitivity,specificity,and practicality assays,respectively.The constructed method achieved the visual detection of plasmid at levels as low as 100 copies,demonstrating its high sensitivity.In addition,good applicability to transgenic samples was observed,with no cross-interference between two test lines and no influence from other genes.In conclusion,this strategy achieved the expected purpose of simultaneous detection of the two popular targets in GM crops within 20 min at 37°C in a rapid,equipmentfree field manner,providing a new alternative for rapid screening for transgenic assays in the field. 展开更多
关键词 Genetically modifi ed crops On-site detection Lateral fl ow test strips Dual recombinase polymerase amplification (RPA)
下载PDF
Evaluation of Productive Plant Landscapes in Cold Regions Based on a Multiple Cropping Model
17
作者 Wu Zhi-heng Zhang Jia-xin +2 位作者 Zhu Xuan-bo Pan Sheng-kai Yan Yong-qing 《Journal of Northeast Agricultural University(English Edition)》 2023年第4期43-52,共10页
Four varieties of each rapeseed and buckwheat were planted in different sowing periods to explore a variety of planting patterns.A theoretical foundation was provided for the innovative application of cold region prod... Four varieties of each rapeseed and buckwheat were planted in different sowing periods to explore a variety of planting patterns.A theoretical foundation was provided for the innovative application of cold region productive plant landscapes.The analytic hierarchy process was employed to develop a model for the evaluation of multiple cropping systems.A comprehensive evaluation was conducted to study 10 indicators in plant type,flower color,flowering period,flower volume,branch coverage,plot average yield,number of grains per plant,yield per plant,thousand-grain quality and ecological adaptability in four different varieties of each rapeseed and buckwheat.The results indicated that flower color,ecological adaptability,plot average yield and flower volume were the most important indicators for the value of productive plant landscapes in cold regions.Concerning the sowing period,the optimal combination of varieties and planting times were March 31 for Qingza No.5(rapeseed)and July 18 for Xinong T1211(buckwheat). 展开更多
关键词 multiple cropping model RAPESEED BUCKWHEAT analytic hierarchy process comprehensive evaluation
下载PDF
Adding Value to Crop Production Systems by Integrating Forage Cover Crop Grazing
18
作者 Robert B. Mitchell Daren D. Redfearn +9 位作者 Kenneth P. Vogel Terry J. Klopfenstein Galen Erickson P. Stephen Baenziger Bruce E. Anderson Mary E. Drewnoski Jay Parsons Steven D. Masterson Marty R. Schmer Virginia L. Jin 《American Journal of Plant Sciences》 CAS 2024年第3期180-192,共13页
In addition to their value as cereal grains, wheat (Triticum aestivum L.) and triticale (× Triticosecale Wittmack) are important cool-season annual forages and cover crops. Yearling steer (Bos taurus) performance... In addition to their value as cereal grains, wheat (Triticum aestivum L.) and triticale (× Triticosecale Wittmack) are important cool-season annual forages and cover crops. Yearling steer (Bos taurus) performance was compared in the spring following autumn establishment as for age cover crops after soybean [Glycine max (L.) Merr.] grain harvest. Replicated pastures (0.4 ha) were no-till seeded in three consecutive years into soybean stubble in autumn, fertilized, and grazed the following spring near Ithaca, NE, USA. Each pasture (n = 3) was continuously stocked in spring with four yearling steers (380 ± 38 kg) for 17, 32, and 28 d in 2005, 2006, and 2007, respectively. In 2005, average daily gain (ADG) for steers grazing triticale exceeded the ADG for wheat by 0.31 kghd<sup>-1</sup>d<sup>-1</sup>. In 2006, wheat ADG exceeded that for triticale by 0.12 kghd<sup>-1</sup>d<sup>-1</sup>. In 2007, steers grazing wheat lost weight, while steers grazing triticale gained 0.20 kghd<sup>-1</sup>d<sup>-1</sup>. Based on the 3-year average animal gains valued at $1.32 kg<sup>-1</sup>, mean net return ($ ha<sup>-1</sup> yr<sup>-1</sup>) was $62.15 for triticale and $22.55 for wheat. Since these grazed cover crops provide ecosystem services in addition to forage, grazing could be viewed as a mechanism for recovering costs and adds additional value to the system. Based on this 3-year grazing trial, triticale was superior to wheat and likely will provide the most stable beef yearling performance across years with variable weather for the western Cornbelt USA. 展开更多
关键词 Cover crops SOYBEAN TRITICALE WHEAT
下载PDF
Assessment of Crop Yield in China Simulated by Thirteen Global Gridded Crop Models
19
作者 Dezhen YIN Fang LI +3 位作者 Yaqiong LU Xiaodong ZENG Zhongda LIN Yanqing ZHOU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第3期420-434,共15页
Global gridded crop models(GGCMs) have been broadly applied to assess the impacts of climate and environmental change and adaptation on agricultural production. China is a major grain producing country, but thus far o... Global gridded crop models(GGCMs) have been broadly applied to assess the impacts of climate and environmental change and adaptation on agricultural production. China is a major grain producing country, but thus far only a few studies have assessed the performance of GGCMs in China, and these studies mainly focused on the average and interannual variability of national and regional yields. Here, a systematic national-and provincial-scale evaluation of the simulations by13 GGCMs [12 from the GGCM Intercomparison(GGCMI) project, phase 1, and CLM5-crop] of the yields of four crops(wheat, maize, rice, and soybean) in China during 1980–2009 was carried out through comparison with crop yield statistics collected from the National Bureau of Statistics of China. Results showed that GGCMI models generally underestimate the national yield of rice but overestimate it for the other three crops, while CLM5-crop can reproduce the national yields of wheat, maize, and rice well. Most GGCMs struggle to simulate the spatial patterns of crop yields. In terms of temporal variability, GGCMI models generally fail to capture the observed significant increases, but some can skillfully simulate the interannual variability. Conversely, CLM5-crop can represent the increases in wheat, maize, and rice, but works less well in simulating the interannual variability. At least one model can skillfully reproduce the temporal variability of yields in the top-10 producing provinces in China, albeit with a few exceptions. This study, for the first time, provides a complete picture of GGCM performance in China, which is important for GGCM development and understanding the reliability and uncertainty of national-and provincial-scale crop yield prediction in China. 展开更多
关键词 global gridded crop model historical crop yield China multi-model evaluation
下载PDF
Co-incorporating green manure and crop straw increases crop productivity and improves soil quality with low greenhouse-gas emissions in a crop rotation
20
作者 Na Zhao Xiquan Wang +6 位作者 Jun Ma Xiaohong Li Jufeng Cao Jie Zhou Linmei Wu Peiyi Zhao Weidong Cao 《The Crop Journal》 SCIE CSCD 2024年第4期1233-1241,共9页
In a nine-year field experiment in a wheat-maize-sunflower cropping system in Hetao Irrigation Area,Inner Mongolia,China,organic amendments applied as straw,manure,green manure,and the combination of green manure and ... In a nine-year field experiment in a wheat-maize-sunflower cropping system in Hetao Irrigation Area,Inner Mongolia,China,organic amendments applied as straw,manure,green manure,and the combination of green manure and straw increased wheat and maize yield,soil aggregate stability,and soil microbial activity in comparison with chemical fertilizer,without changing greenhouse gas emission intensity. 展开更多
关键词 Green manure STRAW MANURE Soil organic carbon Soil quality crop production Diversified cropping
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部