[Objective] The aim was to explore high-yielding cultivation techniques for forage sweet sorghum. [Method[ The effects of planting density and row spacing on plant productivity and grass yield of forage sweet sorghum ...[Objective] The aim was to explore high-yielding cultivation techniques for forage sweet sorghum. [Method[ The effects of planting density and row spacing on plant productivity and grass yield of forage sweet sorghum (Sorghum bicolor (L.) Moench) were compared using split-plot design and LSD method of IBMSPSSStatis- ticsv22. [Result]The planting density and row spacing had important influence on the plant productivity and yield of forage sweet sorghum. The optimum planting density- row spacing combination for plant productivity of forage sweet sorghum was A1B,, i. e., planting density of 75 000 plants/hm2 and row spacing of 40 cm, and the opti- mum combination for yield of forage sweet sorghum was A2B,, i.e., planting density of 225 000 plants/hm2 and row spacing of 40 cm. [Conclusion] This study will pro- vide theoretical basis and technical support for the production practice of forage sweet sorghum.展开更多
Planting mulch grasses in orchards,as a technique to build ecological orchards,can be one of the strategic approaches for rural revitalization.This study sorted out the common varieties of mulch grasses and analyzed t...Planting mulch grasses in orchards,as a technique to build ecological orchards,can be one of the strategic approaches for rural revitalization.This study sorted out the common varieties of mulch grasses and analyzed their application statuses in orchards of southern China.According to different utilization purposes of mulch grasses in orchards,scientific suggestions were given from aspects of grass selection,cultivation techniques,management methods and use modes.The study will provide reference for the construction of ecological orchards in southern China.展开更多
Targeting the problem of available water conservation in sand fixation, the sand-fixing and grass-planting materials were prepared with clay modified by emulsifying vegetable waxes and octylphenol polyoxyethylene eth...Targeting the problem of available water conservation in sand fixation, the sand-fixing and grass-planting materials were prepared with clay modified by emulsifying vegetable waxes and octylphenol polyoxyethylene ether (OP4). The water retention property was studied in simulating desertification environmental climate and the materials were characterized by means of UV-Vis, SEM, FTIR, XRD and TGA measurements. The experimental result showed that the materials had excellent water retention properties, due to that vegetable waxes adhered evenly to clay particle surfaces, made the clay pores changing from hydrophilic to hydrophobic and so inhibited the water evaporation. Grass-planting experiment showed that, with reasonable mass ratio of clay, vegetable waxes and surfactant, the materials not only inhibited water evaporation but also maintained sound air permeability so shat the germination rate and survival rate of grass were significantly improved.展开更多
Construction of "water-saving landscape architecture" is a crucial content of building "conservation-minded society'',an important approach of ensuring the sustainable development of landscaping...Construction of "water-saving landscape architecture" is a crucial content of building "conservation-minded society'',an important approach of ensuring the sustainable development of landscaping industry.It targets at exploring a reasonable means of using the nature,so as to improve ecological conditions and environment,save resources and energies,and promote the harmonious coexistence of man and nature.Landscape plant is a significant component of landscape architecture,it is a key section to choose proper drought-resistant plant species for the landscape construction.展开更多
A field experiment was carried out at the CSIC Muñovela farm belonging to the Spanish National Research Council (CSIC) in order to evaluate the effect of sowing orchard grass (Dactylis glomerata var. Trerano) ...A field experiment was carried out at the CSIC Muñovela farm belonging to the Spanish National Research Council (CSIC) in order to evaluate the effect of sowing orchard grass (Dactylis glomerata var. Trerano) and lucerne (Medicago sativa var. Aragon) in monoculture and in combination. The experiment was based on a randomized block designed with a factorial arrangement (5 × 2). Experimental units were 40 plots distributed in four blocks. The phosphorus fertilization (P) factor included two types of conditions: basal fertilization without phosphorus (-P) and basal fertilization with phosphorus (+P), and the vegetation cover factor (T) included five conditions depending on the grass (G) and the legume (L). Above-ground biomass showed statistically significant differences among seasons and years (P Lolium perenne L. and Poa pratensis L. throughout the three years indicated that both species significantly increased their presence over time regardless of the treatments applied. The analysis performed for the other plant species (those other than grasses and legumes) allowed us to determine that the T1 and T5 treatments, which correspond to single species not treated with the application of phosphorus, influenced the presence of 70% of other species planted. Our specific aim was to explore how changing plant biotic diversity affects productivity under a given set of conditions. We manipulated plant species richness as an experimental factor to determine if productivity would be affected by changes in the ratios of plants sown.展开更多
The effects of the salt stress on plant growth are usually increased by the water stress.We studied the impact of both stresses in simultaneous pulses of drought and salinity on Paspalum dilatatum.This forage species ...The effects of the salt stress on plant growth are usually increased by the water stress.We studied the impact of both stresses in simultaneous pulses of drought and salinity on Paspalum dilatatum.This forage species is native to South America,spread in grasslands in many tropical,subtropical,and temperate areas of the world,and very common in grasslands of the Flooding Pampas of Argentina.Mimicking what happens in nature.We compared a pot experiment,a non-stressed control against water stress for a month(midpoint between field capacity and wilting point),and two saline stresses(moderate,6 d·Sm^(−1)and strong,12 d·Sm^(−1)),also for a month.Aerial biomass(green leaf;non-leaf green material,and dry material)and roots were harvested,weighed,and analyzed for nitrogen,phosphorus,and cations.The biomass of all components significantly decreased when both stresses were applied.Water plus strong saline stress reduced by half the total biomasses,compared to the control.The proportion of aerial biomass/root biomass ratio as well as aerial green component/dry materials ratio tend to decrease when subjected to both stresses.Nitrogen concentration in plants was not significantly affected,but phosphorus concentration increased in aerial biomass components,from 0.10 to 0.18 mg·kg^(−1)between the extreme treatments,but did not change in roots.Sodium concentration in plants increased(i.e.,in green leave sodium(Na)increased from 0.27 to 2.01 mg·kg^(−1)between the extreme treatments),whereas other cations either did not change or decreased,affecting the ratios between them.Sodium performance allows us to infer that the Na accumulation of P.dilatatum behaves in an intermediate range,compared to very tolerant to salts or non-salt tolerant species of the Paspalum genus.In agreement,when salts were applied in the form of a pulse,P.dilatatum tolerated higher salinity than that found by other authors for the same species,using continuous salinity.展开更多
Garden landscape is a beautiful complex formed by space and time complementing each other and acting together.Garden plants are the core landscaping elements in garden landscape construction.It is necessary to flexibl...Garden landscape is a beautiful complex formed by space and time complementing each other and acting together.Garden plants are the core landscaping elements in garden landscape construction.It is necessary to flexibly use a variety of plant landscaping methods to create a richer and more vivid natural landscape,and promote the improvement of the quality of the living environment and the harmonious coexistence between man and nature.展开更多
Establishment of ornamental and aesthetic plants in hot, arid conditions of India is difficult due to the prevailing climatic, edaphic and biotic factors. Effect of turfgrass on the growth of ornamental plants in hot ...Establishment of ornamental and aesthetic plants in hot, arid conditions of India is difficult due to the prevailing climatic, edaphic and biotic factors. Effect of turfgrass on the growth of ornamental plants in hot arid conditions has not been studied so far anywhere in the world. A study was conducted on the campus of Arid Forest Research Institute, Jodhpur, India to assess the performance of a few ornamental plant spe- cies in combination with turfgrass and without turfgrass with respect to different soil tilling intervals. Growth of plants was better with turfgrass than without turfgrass. We suggest adopting a soil tilling interval of 30 days to achieve optimum growth of ornamental plant species in terms of height and crown diameter. Our results can help reduce labor costs and achieving better landscapes in fewer days in hot urban conditions of Indian sub continent.展开更多
Maintaining beneficial, native plant structure and diversity while reducing invasive, nuisance species dominance is an important management domain for natural resource managers. One such vegetation component in North ...Maintaining beneficial, native plant structure and diversity while reducing invasive, nuisance species dominance is an important management domain for natural resource managers. One such vegetation component in North American lakes and reservoirs is submerged aquatic vegetation—a valuable aquatic resource which serves as productive habitat for fish, aquatic macroinvertebrates, and other wildlife. Reservoirs in the southern parts of the United States have experienced varying aquatic plant dominance dynamics due to historical water resource management actions, including drawdowns and introduction of herbivorous fish for the purpose of controlling invasive aquatic vegetation. Some of these management options have also been detrimental to native submerged aquatic vegetation. This paper explores an adaptive management research effort by installing herbivore-protected, fenced-pen submerged aquatic vegetation sites in a high-herbivore reservoir to determine effectiveness of protecting habitat and serving as founder colony sources for propagule spread. Four experimental sites with three management treatments each were planted with American eelgrass. Each site utilized one un-fenced treatment and two treatments with varying mesh sizes for protective fencing-pens. Site integrity, species survival and spread, and grazing were documented. One additional site was installed and planted with other native submerged aquatic vegetation species for nominal species performance descriptions. No plants survived unprotected in the high-herbivore system and plants, in general, performed consistently better within the smaller mesh size. These test planting results were ultimately used to inform adaptive management decision making for plant installation and expansion designs for managing reservoirs invested with Hydrilla, considered one of the most serious invasive aquatic plants in the United States.展开更多
The objective of this study was to evaluate alternative methods of grassland renewal (reseeding) with perennial ryegrass and quantify their effects on subsequent DM yield, tiller density and nitrate leaching. Two expe...The objective of this study was to evaluate alternative methods of grassland renewal (reseeding) with perennial ryegrass and quantify their effects on subsequent DM yield, tiller density and nitrate leaching. Two experiments were carried out;the first focused on quantifying the influence of Autumn reseeding (August cultivation), and the second, on Spring reseeding (May cultivation) on sward establishment and grass DM production. The study incorporated six treatments namely: direct drill (DD), disc plus power harrow (DPH), power harrow (PH), conventional-plough, till and sow (PLO), and the chemical application of diquat to suppress the existing sward followed by direct drilling (DIQ), represented a rejuvenation method as opposed to full renewal (Spring trial only). All treatments were compared against a control (old permanent pasture). Reseeded swards produced more seasonal (P < 0.05) and total (P < 0.01 Autumn only) DM yield than the control sward. All reseeding methods increased the perennial ryegrass tiller density of the sward compared to the old permanent pasture (P < 0.05 Autumn trial, P < 0.001 Spring trial). All sward renewal methods evaluated were equally as effective as the conventional method of grassland reseeding with the DIQ rejuvenation method intermediate as measured in terms of DM yield and PRG tiller density. The results of the study show no significant difference in the level of nitrate lost in leachate following reseeding regardless of method used or indeed any difference between reseeded swards and old permanent pasture.展开更多
文摘[Objective] The aim was to explore high-yielding cultivation techniques for forage sweet sorghum. [Method[ The effects of planting density and row spacing on plant productivity and grass yield of forage sweet sorghum (Sorghum bicolor (L.) Moench) were compared using split-plot design and LSD method of IBMSPSSStatis- ticsv22. [Result]The planting density and row spacing had important influence on the plant productivity and yield of forage sweet sorghum. The optimum planting density- row spacing combination for plant productivity of forage sweet sorghum was A1B,, i. e., planting density of 75 000 plants/hm2 and row spacing of 40 cm, and the opti- mum combination for yield of forage sweet sorghum was A2B,, i.e., planting density of 225 000 plants/hm2 and row spacing of 40 cm. [Conclusion] This study will pro- vide theoretical basis and technical support for the production practice of forage sweet sorghum.
基金Supported by National Key Research&Development Project(2018YFD0800501)Hunan Key Research&Development Project(2016JC2028)Science and Technology Innovation Project in Hunan Academy of Agricultural Sciences(2018QN33)~~
文摘Planting mulch grasses in orchards,as a technique to build ecological orchards,can be one of the strategic approaches for rural revitalization.This study sorted out the common varieties of mulch grasses and analyzed their application statuses in orchards of southern China.According to different utilization purposes of mulch grasses in orchards,scientific suggestions were given from aspects of grass selection,cultivation techniques,management methods and use modes.The study will provide reference for the construction of ecological orchards in southern China.
基金Funded by the National Natural Science Foundation of China(No.50772131)the Main Project of Ministry of Education of China(No.106086)the Fundamental Research Funds for the Central Universities of China University of Mining and Technology(Beijing)(No.2010YJ05)
文摘Targeting the problem of available water conservation in sand fixation, the sand-fixing and grass-planting materials were prepared with clay modified by emulsifying vegetable waxes and octylphenol polyoxyethylene ether (OP4). The water retention property was studied in simulating desertification environmental climate and the materials were characterized by means of UV-Vis, SEM, FTIR, XRD and TGA measurements. The experimental result showed that the materials had excellent water retention properties, due to that vegetable waxes adhered evenly to clay particle surfaces, made the clay pores changing from hydrophilic to hydrophobic and so inhibited the water evaporation. Grass-planting experiment showed that, with reasonable mass ratio of clay, vegetable waxes and surfactant, the materials not only inhibited water evaporation but also maintained sound air permeability so shat the germination rate and survival rate of grass were significantly improved.
文摘Construction of "water-saving landscape architecture" is a crucial content of building "conservation-minded society'',an important approach of ensuring the sustainable development of landscaping industry.It targets at exploring a reasonable means of using the nature,so as to improve ecological conditions and environment,save resources and energies,and promote the harmonious coexistence of man and nature.Landscape plant is a significant component of landscape architecture,it is a key section to choose proper drought-resistant plant species for the landscape construction.
文摘A field experiment was carried out at the CSIC Muñovela farm belonging to the Spanish National Research Council (CSIC) in order to evaluate the effect of sowing orchard grass (Dactylis glomerata var. Trerano) and lucerne (Medicago sativa var. Aragon) in monoculture and in combination. The experiment was based on a randomized block designed with a factorial arrangement (5 × 2). Experimental units were 40 plots distributed in four blocks. The phosphorus fertilization (P) factor included two types of conditions: basal fertilization without phosphorus (-P) and basal fertilization with phosphorus (+P), and the vegetation cover factor (T) included five conditions depending on the grass (G) and the legume (L). Above-ground biomass showed statistically significant differences among seasons and years (P Lolium perenne L. and Poa pratensis L. throughout the three years indicated that both species significantly increased their presence over time regardless of the treatments applied. The analysis performed for the other plant species (those other than grasses and legumes) allowed us to determine that the T1 and T5 treatments, which correspond to single species not treated with the application of phosphorus, influenced the presence of 70% of other species planted. Our specific aim was to explore how changing plant biotic diversity affects productivity under a given set of conditions. We manipulated plant species richness as an experimental factor to determine if productivity would be affected by changes in the ratios of plants sown.
文摘The effects of the salt stress on plant growth are usually increased by the water stress.We studied the impact of both stresses in simultaneous pulses of drought and salinity on Paspalum dilatatum.This forage species is native to South America,spread in grasslands in many tropical,subtropical,and temperate areas of the world,and very common in grasslands of the Flooding Pampas of Argentina.Mimicking what happens in nature.We compared a pot experiment,a non-stressed control against water stress for a month(midpoint between field capacity and wilting point),and two saline stresses(moderate,6 d·Sm^(−1)and strong,12 d·Sm^(−1)),also for a month.Aerial biomass(green leaf;non-leaf green material,and dry material)and roots were harvested,weighed,and analyzed for nitrogen,phosphorus,and cations.The biomass of all components significantly decreased when both stresses were applied.Water plus strong saline stress reduced by half the total biomasses,compared to the control.The proportion of aerial biomass/root biomass ratio as well as aerial green component/dry materials ratio tend to decrease when subjected to both stresses.Nitrogen concentration in plants was not significantly affected,but phosphorus concentration increased in aerial biomass components,from 0.10 to 0.18 mg·kg^(−1)between the extreme treatments,but did not change in roots.Sodium concentration in plants increased(i.e.,in green leave sodium(Na)increased from 0.27 to 2.01 mg·kg^(−1)between the extreme treatments),whereas other cations either did not change or decreased,affecting the ratios between them.Sodium performance allows us to infer that the Na accumulation of P.dilatatum behaves in an intermediate range,compared to very tolerant to salts or non-salt tolerant species of the Paspalum genus.In agreement,when salts were applied in the form of a pulse,P.dilatatum tolerated higher salinity than that found by other authors for the same species,using continuous salinity.
文摘Garden landscape is a beautiful complex formed by space and time complementing each other and acting together.Garden plants are the core landscaping elements in garden landscape construction.It is necessary to flexibly use a variety of plant landscaping methods to create a richer and more vivid natural landscape,and promote the improvement of the quality of the living environment and the harmonious coexistence between man and nature.
文摘Establishment of ornamental and aesthetic plants in hot, arid conditions of India is difficult due to the prevailing climatic, edaphic and biotic factors. Effect of turfgrass on the growth of ornamental plants in hot arid conditions has not been studied so far anywhere in the world. A study was conducted on the campus of Arid Forest Research Institute, Jodhpur, India to assess the performance of a few ornamental plant spe- cies in combination with turfgrass and without turfgrass with respect to different soil tilling intervals. Growth of plants was better with turfgrass than without turfgrass. We suggest adopting a soil tilling interval of 30 days to achieve optimum growth of ornamental plant species in terms of height and crown diameter. Our results can help reduce labor costs and achieving better landscapes in fewer days in hot urban conditions of Indian sub continent.
文摘Maintaining beneficial, native plant structure and diversity while reducing invasive, nuisance species dominance is an important management domain for natural resource managers. One such vegetation component in North American lakes and reservoirs is submerged aquatic vegetation—a valuable aquatic resource which serves as productive habitat for fish, aquatic macroinvertebrates, and other wildlife. Reservoirs in the southern parts of the United States have experienced varying aquatic plant dominance dynamics due to historical water resource management actions, including drawdowns and introduction of herbivorous fish for the purpose of controlling invasive aquatic vegetation. Some of these management options have also been detrimental to native submerged aquatic vegetation. This paper explores an adaptive management research effort by installing herbivore-protected, fenced-pen submerged aquatic vegetation sites in a high-herbivore reservoir to determine effectiveness of protecting habitat and serving as founder colony sources for propagule spread. Four experimental sites with three management treatments each were planted with American eelgrass. Each site utilized one un-fenced treatment and two treatments with varying mesh sizes for protective fencing-pens. Site integrity, species survival and spread, and grazing were documented. One additional site was installed and planted with other native submerged aquatic vegetation species for nominal species performance descriptions. No plants survived unprotected in the high-herbivore system and plants, in general, performed consistently better within the smaller mesh size. These test planting results were ultimately used to inform adaptive management decision making for plant installation and expansion designs for managing reservoirs invested with Hydrilla, considered one of the most serious invasive aquatic plants in the United States.
文摘The objective of this study was to evaluate alternative methods of grassland renewal (reseeding) with perennial ryegrass and quantify their effects on subsequent DM yield, tiller density and nitrate leaching. Two experiments were carried out;the first focused on quantifying the influence of Autumn reseeding (August cultivation), and the second, on Spring reseeding (May cultivation) on sward establishment and grass DM production. The study incorporated six treatments namely: direct drill (DD), disc plus power harrow (DPH), power harrow (PH), conventional-plough, till and sow (PLO), and the chemical application of diquat to suppress the existing sward followed by direct drilling (DIQ), represented a rejuvenation method as opposed to full renewal (Spring trial only). All treatments were compared against a control (old permanent pasture). Reseeded swards produced more seasonal (P < 0.05) and total (P < 0.01 Autumn only) DM yield than the control sward. All reseeding methods increased the perennial ryegrass tiller density of the sward compared to the old permanent pasture (P < 0.05 Autumn trial, P < 0.001 Spring trial). All sward renewal methods evaluated were equally as effective as the conventional method of grassland reseeding with the DIQ rejuvenation method intermediate as measured in terms of DM yield and PRG tiller density. The results of the study show no significant difference in the level of nitrate lost in leachate following reseeding regardless of method used or indeed any difference between reseeded swards and old permanent pasture.