The East Asian westerly jet(EAJ), an important midlatitude circulation of the East Asian summer monsoon system,plays a crucial role in affecting summer rainfall over East Asia. The multimodel ensemble of current coupl...The East Asian westerly jet(EAJ), an important midlatitude circulation of the East Asian summer monsoon system,plays a crucial role in affecting summer rainfall over East Asia. The multimodel ensemble of current coupled models can generally capture the intensity and location of the climatological summer EAJ. However, individual models still exhibit large discrepancies. This study investigates the intermodel diversity in the longitudinal location of the simulated summer EAJ climatology in the present-day climate and its implications for rainfall over East Asia based on 20 CMIP5 models. The results show that the zonal location of the simulated EAJ core is located over either the midlatitude Asian continent or the western North Pacific(WNP) in different models. The zonal shift of the EAJ core depicts a major intermodel diversity of the simulated EAJ climatology. The westward retreat of the EAJ core is related to a warmer mid–upper tropospheric temperature in the midlatitudes, with a southwest–northeast tilt extending from Southwest Asia to Northeast Asia and the northern North Pacific, induced partially by the simulated stronger rainfall climatology over South Asia. The zonal shift of the EAJ core has some implications for the summer rainfall climatology, with stronger rainfall over the East Asian continent and weaker rainfall over the subtropical WNP in relation to the westward-located EAJ core.展开更多
The Southern Annular Mode(SAM)plays an important role in regulating Southern Hemisphere extratropical circulation.State-of-the-art models exhibit intermodel spread in simulating long-term changes in the SAM.Results fr...The Southern Annular Mode(SAM)plays an important role in regulating Southern Hemisphere extratropical circulation.State-of-the-art models exhibit intermodel spread in simulating long-term changes in the SAM.Results from Atmospheric Model Intercomparison Project(AMIP)experiments from 28 models archived in CMIP5 show that the intermodel spread in the linear trend in the austral winter(June−July−August)SAM is significant,with an intermodel standard deviation of 0.28(10 yr)−1,larger than the multimodel ensemble mean of 0.18(10 yr)−1.This study explores potential factors underlying the model difference from the aspect of extratropical sea surface temperature(SST).Extratropical SST anomalies related to the SAM exhibit a dipole-like structure between middle and high latitudes,referred to as the Southern Ocean Dipole(SOD).The role of SOD-like SST anomalies in influencing the SAM is found in the AMIP simulations.Model performance in simulating the SAM trend is linked with model skill in reflecting the SOD−SAM relationship.Models with stronger linkage between the SOD and the SAM tend to simulate a stronger SAM trend.The explained variance is about 40%in the AMIP runs.These results suggest improved simulation of the SOD−SAM relationship may help reproduce long-term changes in the SAM.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 41775062)the Youth Innovation Promotion Association (Grant No. CAS 2017105)+1 种基金supported by the National Key R&D Program of China (Grant No. 2017YFA0603802)the National Natural Science Foundation of China (Grant No. 41675084)
文摘The East Asian westerly jet(EAJ), an important midlatitude circulation of the East Asian summer monsoon system,plays a crucial role in affecting summer rainfall over East Asia. The multimodel ensemble of current coupled models can generally capture the intensity and location of the climatological summer EAJ. However, individual models still exhibit large discrepancies. This study investigates the intermodel diversity in the longitudinal location of the simulated summer EAJ climatology in the present-day climate and its implications for rainfall over East Asia based on 20 CMIP5 models. The results show that the zonal location of the simulated EAJ core is located over either the midlatitude Asian continent or the western North Pacific(WNP) in different models. The zonal shift of the EAJ core depicts a major intermodel diversity of the simulated EAJ climatology. The westward retreat of the EAJ core is related to a warmer mid–upper tropospheric temperature in the midlatitudes, with a southwest–northeast tilt extending from Southwest Asia to Northeast Asia and the northern North Pacific, induced partially by the simulated stronger rainfall climatology over South Asia. The zonal shift of the EAJ core has some implications for the summer rainfall climatology, with stronger rainfall over the East Asian continent and weaker rainfall over the subtropical WNP in relation to the westward-located EAJ core.
基金This work was jointly supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA19070402)a National Key Research and Development Project(Grant No.2018YFA0606404)the National Natural Science Foundation of China(Grant Nos.41790474 and 41775090).
文摘The Southern Annular Mode(SAM)plays an important role in regulating Southern Hemisphere extratropical circulation.State-of-the-art models exhibit intermodel spread in simulating long-term changes in the SAM.Results from Atmospheric Model Intercomparison Project(AMIP)experiments from 28 models archived in CMIP5 show that the intermodel spread in the linear trend in the austral winter(June−July−August)SAM is significant,with an intermodel standard deviation of 0.28(10 yr)−1,larger than the multimodel ensemble mean of 0.18(10 yr)−1.This study explores potential factors underlying the model difference from the aspect of extratropical sea surface temperature(SST).Extratropical SST anomalies related to the SAM exhibit a dipole-like structure between middle and high latitudes,referred to as the Southern Ocean Dipole(SOD).The role of SOD-like SST anomalies in influencing the SAM is found in the AMIP simulations.Model performance in simulating the SAM trend is linked with model skill in reflecting the SOD−SAM relationship.Models with stronger linkage between the SOD and the SAM tend to simulate a stronger SAM trend.The explained variance is about 40%in the AMIP runs.These results suggest improved simulation of the SOD−SAM relationship may help reproduce long-term changes in the SAM.