A few typical models of theory on rolling contact of bodies are reviewed, and the advantages and disadvantages in the applications to the dynamics of railway vehicles and the wheel/rail r...A few typical models of theory on rolling contact of bodies are reviewed, and the advantages and disadvantages in the applications to the dynamics of railway vehicles and the wheel/rail rolling contact are discussed in detail in the present paper.展开更多
In this work,a method is put forward to obtain the dynamic solution efficiently and accurately for a large-scale train-track-substructure(TTS)system.It is called implicit-explicit integration and multi-time-step solut...In this work,a method is put forward to obtain the dynamic solution efficiently and accurately for a large-scale train-track-substructure(TTS)system.It is called implicit-explicit integration and multi-time-step solution method(abbreviated as mI-nE-MTS method).The TTS system is divided into train-track subsystem and substruc-ture subsystem.Considering that the root cause of low effi-ciency of obtaining TTS solution lies in solving the alge-braic equation of the substructures,the high-efficient Zhai method,an explicit integration scheme,can be introduced to avoid matrix inversion process.The train-track system is solved by implicitly Park method.Moreover,it is known that the requirement of time step size differs for different sub-systems,integration methods and structural frequency response characteristics.A multi-time-step solution is pro-posed,in which time step size for the train-track subsystem and the substructure subsystem can be arbitrarily chosen once satisfying stability and precision demand,namely the time spent for m implicit integral steps is equal to n explicit integral steps,i.e.,mI=nE as mentioned above.The numeri-cal examples show the accuracy,efficiency,and engineering practicality of the proposed method.展开更多
Due to the fact that ballastless tracks in highspeed railways are not only subjected to repeated train–track dynamic interaction loads,but also suffer from complex environmental loads,the fundamental understanding of...Due to the fact that ballastless tracks in highspeed railways are not only subjected to repeated train–track dynamic interaction loads,but also suffer from complex environmental loads,the fundamental understanding of mechanical performance of ballastless tracks under sophisticated service conditions is an increasingly demanding and challenging issue in high-speed railway networks.This work aims to reveal the effect of train–track interaction and environment loads on the mechanical characteristic variation of ballastless tracks in high-speed railways,particularly focusing on the typical interface damage evolution between track layers.To this end,a finite element model of a double-block ballastless track involving the cohesive zone model for the track interface is first established to analyze the mechanical properties of the track interface under the loading–unloading processes of the negative temperature gradient load(TGL)followed by the same cycle of the positive TGL.Subsequently,the effect of wheel–rail longitudinal interactions on the nonlinear dynamic characteristics of the track interface is investigated by using a vehicle-slab track vertical-longitudinal coupled dynamics model.Finally,the influence of dynamic water pressure induced by vehicle dynamic load on the mechanical characteristics and damage evolution of the track interface is elucidated using a fluid–solid coupling method.Results show that the loading history of the positive and negative TGLs has a great impact on the nonlinear development and distribution of the track interface stress and damage;the interface damage could be induced by the wheel–rail longitudinal vibrations at a high vehicle running speed owing to the dynamic amplification effect caused by short wave irregularities;the vehicle dynamic load could produce considerable water pressure that presents nonlinear spatial–temporal characteristics at the track interface,which would lead to the interface failure under a certain condition due to the coupled dynamic effect of vehicle load and water pressure.展开更多
Based on the construction bridge of Xiamen-Shenzhen high-speed railway(9-32 m simply-supported beam + 6×32 m continuous beam),the pier-beam-track finite element model,where the continuous beam of the ballast trac...Based on the construction bridge of Xiamen-Shenzhen high-speed railway(9-32 m simply-supported beam + 6×32 m continuous beam),the pier-beam-track finite element model,where the continuous beam of the ballast track and simply-supported beam are combined with each other,was established.The laws of the track stress,the pier longitudinal stress and the beam-track relative displacement were analyzed.The results show that reducing the longitudinal resistance can effectively reduce the track stress and the pier stress of the continuous beam,and increase the beam-track relative displacement.Increasing the rigid pier stiffness of continuous beam can reduce the track braking stress,increase the pier longitudinal stress and reduce the beam-track relative displacement,Increasing the rigid pier stiffness of simply-supported beam can reduce the track braking stress,the rigid pier longitudinal stress and the beam-track relative displacement.展开更多
X-style arch bridge on high-speed railways(HSR)is one kind of complicated long-span structure,and the track-bridge interaction is essential to ensure the safety and smoothness of HSR.Taking an X-style steel-box arch b...X-style arch bridge on high-speed railways(HSR)is one kind of complicated long-span structure,and the track-bridge interaction is essential to ensure the safety and smoothness of HSR.Taking an X-style steel-box arch bridge with a main span of450 m on HSR under construction for example,a new integrative mechanic model of rail-stringer-cross beam-suspenderpier-foundation coupling system was established,adopting the nonlinear spring element simulating the longitudinal resistance between track and bridge.The transmission law of continuous welded rail(CWR)on the X-style arch bridge was researched,and comparative study was carried out to discuss the influence of several sensitive factors,such as the temperature load case,the longitudinal resistance model,the scheme of longitudinal restraint conditions,the introverted inclination of arch rib,the stiffness of pier and abutment and the location of the rail expansion device.Calculating results indicate that the longitudinal resistance has a significant impact upon the longitudinal forces of CWR on this kind of bridge,while the arch rib’s inclination has little effect.Besides,temperature variation of arch ribs and suspenders should be taken into account in the calculation.Selecting the restraint system without longitudinally-fixed bearing and setting the rail expansion devices on both ends are more reasonable.展开更多
This paper aims to clarify the influence of system spatial variability on train–track interaction from perspectives of stochastic analysis and statistics.Considering the spatial randomness of system properties in geo...This paper aims to clarify the influence of system spatial variability on train–track interaction from perspectives of stochastic analysis and statistics.Considering the spatial randomness of system properties in geometry,physics and mechanics,the primary work is therefore simulating the uncertainties realistically,representatively and efficiently.With regard to the track irregularity simulation,a model is newly developed to obtain random sample sets of track irregularities by transforming its power spectral density function into the equivalent track quality index for representation based on the discrete Parseval theorem,where the correlation between various types of track irregularities is accounted for.To statistically clarify the uncertainty of track properties in physics and mechanics in space,a model combining discrete element method and finite element method is developed to obtain the spatially varied track parametric characteristics,e.g.track stiffness and density,through which the highly expensive experiments in situ can be avoided.Finally a train–track stochastic analysis model is formulated by integrating the system uncertainties into the dynamics model.Numerical examples have validated the accuracy and efficiency of this model and illustrated the effects of system spatial variability on train–track vibrations comprehensively.展开更多
Purpose: Fully integrating its e-reserves service into the university's course management system has become the primary design goal of the innovative e-reserves service system at Shanghai Jiao Tong University(SJTU...Purpose: Fully integrating its e-reserves service into the university's course management system has become the primary design goal of the innovative e-reserves service system at Shanghai Jiao Tong University(SJTU) Library.Design/methodology/approach: Through blending library and information service into the teaching and learning process, SJTU Library has effectively combined its reserves service into the user learning environment. The main metadata model and the design of various interfaces of the e-reserves service system are introduced.Findings: E-reserves has been integrated into the course management system. Users can directly access relevant resources when they browse the customized course page. It is more convenient for teachers to add reserves items, and the added items can be made available simultaneously on SJTU Library's resource discovery platform automatically.Research limitations: At present, e-reserves items are mainly books, and more other types of reserves materials are needed to be provided. Some relevant copyright issues should be addressed.Practical implications: Using a series of interface interactions, the e-reserves service has been integrated into the university's course management system. It is convenient for students to access customized e-reserves service during their learning process.Originality/value: We achieved interconnection between the e-reserves and the university's course management system. Information on the e-reserves Web page is automatically updated.SJTU Library provides customized e-reserves service in the course management system.展开更多
It is necessary to know the status of adhesion conditions between wheel and rail for efficient accelerating and decelerating of railroad vehicle.The proper estimation of adhesion conditions and their real-time impleme...It is necessary to know the status of adhesion conditions between wheel and rail for efficient accelerating and decelerating of railroad vehicle.The proper estimation of adhesion conditions and their real-time implementation is considered a challenge for scholars.In this paper,the development of simulation model of extended Kalman filter(EKF)in MATLAB/Simulink is presented to estimate various railway wheelset parameters in different contact conditions of track.Due to concurrent in nature,the Xilinx®System-on-Chip Zynq Field Programmable Gate Array(FPGA)device is chosen to check the onboard estimation ofwheel-rail interaction parameters by using the National Instruments(NI)myRIO®development board.The NImyRIO®development board is flexible to deal with nonlinearities,uncertain changes,and fastchanging dynamics in real-time occurring in wheel-rail contact conditions during vehicle operation.The simulated dataset of the railway nonlinear wheelsetmodel is tested on FPGA-based EKF with different track conditions and with accelerating and decelerating operations of the vehicle.The proposed model-based estimation of railway wheelset parameters is synthesized on FPGA and its simulation is carried out for functional verification on FPGA.The obtained simulation results are aligned with the simulation results obtained through MATLAB.To the best of our knowledge,this is the first time study that presents the implementation of a model-based estimation of railway wheelset parameters on FPGA and its functional verification.The functional behavior of the FPGA-based estimator shows that these results are the addition of current knowledge in the field of the railway.展开更多
Purpose–The purpose of this paper is to summarize the status and characteristics of rail technology of high-speed railway in China,and point out the development direction of rail technology of high-speed railway.Desi...Purpose–The purpose of this paper is to summarize the status and characteristics of rail technology of high-speed railway in China,and point out the development direction of rail technology of high-speed railway.Design/methodology/approach–This study reviews the evolution of high-speed rail standards in China,comparing their chemical composition,mechanical attributes and geometric specifications with EN standards.It delves into the status of rail production technology,shifts in key performance indicators and the quality characteristics of rails.The analysis further examines the interplay between wheels and rails,the implementation of grinding technology and the techniques for inspecting rail service conditions.It encapsulates the salient features of rail operation and maintenance within the high-speed railway ecosystem.The paper concludes with an insightful prognosis of high-speed railway technology development in China.Findings–The rail standards of high-speed railway in China are scientific and advanced,highly operational and in line with international standards.The quality and performance of rail in China have reached the world’s advanced level.The 60N profile guarantees the operation quality of wheel–rail interaction effectively.The rail grinding technology system scientifically guarantees the long-term good service performance of the rail.The rail service state detection technology is scientific and efficient.The rail technology will take“more intelligent”and“higher speed”as the development direction to meet the future needs of high-speed railway in China.Originality/value–The development direction of rail technology for high-speed railway in China is defined,which will promote the continuous innovation and breakthrough of rail technology.展开更多
Due to the limitations of railway route selection,some high-speed railways are inevitably built near or across fault zones.To study the distribution of rail-bridge interaction under different load history states of su...Due to the limitations of railway route selection,some high-speed railways are inevitably built near or across fault zones.To study the distribution of rail-bridge interaction under different load history states of suspension bridges under three types of near-fault pulse-type earthquakes,this paper takes China’s longest high-speed railway suspension bridge—Wufengshan Yangtze River Bridge-as the background and establishes a spatial model of the rail-bridge interaction of a suspension bridge.The results show that:under the constant load state,the distribution of additional force under three types of pulse-type earthquakes is generally consistent,and pulse-type earthquakes produce more significant responses than non-pulse-type earthquakes;with fling-step pulse being the largest,it is advised to specifically consider the influence of the fling-step pulse in the calculation.Under the initial condition of the main beam temperature loading history,all rail-bridge additional forces increase significantly,particularly affecting the steel rail system.The value of the rail-bridge interaction additional force under the near-fault earthquake in the initial state of the suspension bridge when the train deflection load is loaded from the tower to the mid-span is more significant and particularly unfavourable.The initial effect of the braking load will weaken the effect of the deflection load loading history.The results of the study indicate that the effect of the initial state of suspension bridges is an important factor influencing the rail-bridge interaction under near-fault pulse-type earthquakes,which needs to be considered in future seismic design.展开更多
文摘A few typical models of theory on rolling contact of bodies are reviewed, and the advantages and disadvantages in the applications to the dynamics of railway vehicles and the wheel/rail rolling contact are discussed in detail in the present paper.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.52008404,U1934217 and 11790283)Science and Technology Research and Development Program Project of China Railway Group Limited(Major Special Project,No.2020-Special-02)the National Natural Science Foundation of Hunan Province(Grant No.2021JJ30850).
文摘In this work,a method is put forward to obtain the dynamic solution efficiently and accurately for a large-scale train-track-substructure(TTS)system.It is called implicit-explicit integration and multi-time-step solution method(abbreviated as mI-nE-MTS method).The TTS system is divided into train-track subsystem and substruc-ture subsystem.Considering that the root cause of low effi-ciency of obtaining TTS solution lies in solving the alge-braic equation of the substructures,the high-efficient Zhai method,an explicit integration scheme,can be introduced to avoid matrix inversion process.The train-track system is solved by implicitly Park method.Moreover,it is known that the requirement of time step size differs for different sub-systems,integration methods and structural frequency response characteristics.A multi-time-step solution is pro-posed,in which time step size for the train-track subsystem and the substructure subsystem can be arbitrarily chosen once satisfying stability and precision demand,namely the time spent for m implicit integral steps is equal to n explicit integral steps,i.e.,mI=nE as mentioned above.The numeri-cal examples show the accuracy,efficiency,and engineering practicality of the proposed method.
基金the National Natural Science Foundation of China(Nos.51708457,11790283,and 51978587)the Fund from State Key Laboratory of Traction Power(2019TPL-T16)+1 种基金the Young Elite Scientists Sponsorship Program by CAST(2018QNRC001)the 111 Project(Grant No.B16041)。
文摘Due to the fact that ballastless tracks in highspeed railways are not only subjected to repeated train–track dynamic interaction loads,but also suffer from complex environmental loads,the fundamental understanding of mechanical performance of ballastless tracks under sophisticated service conditions is an increasingly demanding and challenging issue in high-speed railway networks.This work aims to reveal the effect of train–track interaction and environment loads on the mechanical characteristic variation of ballastless tracks in high-speed railways,particularly focusing on the typical interface damage evolution between track layers.To this end,a finite element model of a double-block ballastless track involving the cohesive zone model for the track interface is first established to analyze the mechanical properties of the track interface under the loading–unloading processes of the negative temperature gradient load(TGL)followed by the same cycle of the positive TGL.Subsequently,the effect of wheel–rail longitudinal interactions on the nonlinear dynamic characteristics of the track interface is investigated by using a vehicle-slab track vertical-longitudinal coupled dynamics model.Finally,the influence of dynamic water pressure induced by vehicle dynamic load on the mechanical characteristics and damage evolution of the track interface is elucidated using a fluid–solid coupling method.Results show that the loading history of the positive and negative TGLs has a great impact on the nonlinear development and distribution of the track interface stress and damage;the interface damage could be induced by the wheel–rail longitudinal vibrations at a high vehicle running speed owing to the dynamic amplification effect caused by short wave irregularities;the vehicle dynamic load could produce considerable water pressure that presents nonlinear spatial–temporal characteristics at the track interface,which would lead to the interface failure under a certain condition due to the coupled dynamic effect of vehicle load and water pressure.
基金Project(50678176) supported by the National Natural Science Foundation of China
文摘Based on the construction bridge of Xiamen-Shenzhen high-speed railway(9-32 m simply-supported beam + 6×32 m continuous beam),the pier-beam-track finite element model,where the continuous beam of the ballast track and simply-supported beam are combined with each other,was established.The laws of the track stress,the pier longitudinal stress and the beam-track relative displacement were analyzed.The results show that reducing the longitudinal resistance can effectively reduce the track stress and the pier stress of the continuous beam,and increase the beam-track relative displacement.Increasing the rigid pier stiffness of continuous beam can reduce the track braking stress,increase the pier longitudinal stress and reduce the beam-track relative displacement,Increasing the rigid pier stiffness of simply-supported beam can reduce the track braking stress,the rigid pier longitudinal stress and the beam-track relative displacement.
基金Projects(51378503,51178471) supported by the National Natural Science Foundation of China
文摘X-style arch bridge on high-speed railways(HSR)is one kind of complicated long-span structure,and the track-bridge interaction is essential to ensure the safety and smoothness of HSR.Taking an X-style steel-box arch bridge with a main span of450 m on HSR under construction for example,a new integrative mechanic model of rail-stringer-cross beam-suspenderpier-foundation coupling system was established,adopting the nonlinear spring element simulating the longitudinal resistance between track and bridge.The transmission law of continuous welded rail(CWR)on the X-style arch bridge was researched,and comparative study was carried out to discuss the influence of several sensitive factors,such as the temperature load case,the longitudinal resistance model,the scheme of longitudinal restraint conditions,the introverted inclination of arch rib,the stiffness of pier and abutment and the location of the rail expansion device.Calculating results indicate that the longitudinal resistance has a significant impact upon the longitudinal forces of CWR on this kind of bridge,while the arch rib’s inclination has little effect.Besides,temperature variation of arch ribs and suspenders should be taken into account in the calculation.Selecting the restraint system without longitudinally-fixed bearing and setting the rail expansion devices on both ends are more reasonable.
基金supported by National Natural Science Foundation of China (NSFC) under Grant Nos. 51735012 and 11790283
文摘This paper aims to clarify the influence of system spatial variability on train–track interaction from perspectives of stochastic analysis and statistics.Considering the spatial randomness of system properties in geometry,physics and mechanics,the primary work is therefore simulating the uncertainties realistically,representatively and efficiently.With regard to the track irregularity simulation,a model is newly developed to obtain random sample sets of track irregularities by transforming its power spectral density function into the equivalent track quality index for representation based on the discrete Parseval theorem,where the correlation between various types of track irregularities is accounted for.To statistically clarify the uncertainty of track properties in physics and mechanics in space,a model combining discrete element method and finite element method is developed to obtain the spatially varied track parametric characteristics,e.g.track stiffness and density,through which the highly expensive experiments in situ can be avoided.Finally a train–track stochastic analysis model is formulated by integrating the system uncertainties into the dynamics model.Numerical examples have validated the accuracy and efficiency of this model and illustrated the effects of system spatial variability on train–track vibrations comprehensively.
基金supported by the Scientific and Research Innovation Project of Shanghai Municipal Education Commission
文摘Purpose: Fully integrating its e-reserves service into the university's course management system has become the primary design goal of the innovative e-reserves service system at Shanghai Jiao Tong University(SJTU) Library.Design/methodology/approach: Through blending library and information service into the teaching and learning process, SJTU Library has effectively combined its reserves service into the user learning environment. The main metadata model and the design of various interfaces of the e-reserves service system are introduced.Findings: E-reserves has been integrated into the course management system. Users can directly access relevant resources when they browse the customized course page. It is more convenient for teachers to add reserves items, and the added items can be made available simultaneously on SJTU Library's resource discovery platform automatically.Research limitations: At present, e-reserves items are mainly books, and more other types of reserves materials are needed to be provided. Some relevant copyright issues should be addressed.Practical implications: Using a series of interface interactions, the e-reserves service has been integrated into the university's course management system. It is convenient for students to access customized e-reserves service during their learning process.Originality/value: We achieved interconnection between the e-reserves and the university's course management system. Information on the e-reserves Web page is automatically updated.SJTU Library provides customized e-reserves service in the course management system.
文摘It is necessary to know the status of adhesion conditions between wheel and rail for efficient accelerating and decelerating of railroad vehicle.The proper estimation of adhesion conditions and their real-time implementation is considered a challenge for scholars.In this paper,the development of simulation model of extended Kalman filter(EKF)in MATLAB/Simulink is presented to estimate various railway wheelset parameters in different contact conditions of track.Due to concurrent in nature,the Xilinx®System-on-Chip Zynq Field Programmable Gate Array(FPGA)device is chosen to check the onboard estimation ofwheel-rail interaction parameters by using the National Instruments(NI)myRIO®development board.The NImyRIO®development board is flexible to deal with nonlinearities,uncertain changes,and fastchanging dynamics in real-time occurring in wheel-rail contact conditions during vehicle operation.The simulated dataset of the railway nonlinear wheelsetmodel is tested on FPGA-based EKF with different track conditions and with accelerating and decelerating operations of the vehicle.The proposed model-based estimation of railway wheelset parameters is synthesized on FPGA and its simulation is carried out for functional verification on FPGA.The obtained simulation results are aligned with the simulation results obtained through MATLAB.To the best of our knowledge,this is the first time study that presents the implementation of a model-based estimation of railway wheelset parameters on FPGA and its functional verification.The functional behavior of the FPGA-based estimator shows that these results are the addition of current knowledge in the field of the railway.
基金supported by the National Key R&D Program of China[Grant No.2022YFB2603402]the Task of Science and Technology R&D Program of China Railway Corporation[Grant No.K2023G013]the R&D Fund Project of China Academy of Railway Science Corporation Limited[Grant No.2022YJ165].
文摘Purpose–The purpose of this paper is to summarize the status and characteristics of rail technology of high-speed railway in China,and point out the development direction of rail technology of high-speed railway.Design/methodology/approach–This study reviews the evolution of high-speed rail standards in China,comparing their chemical composition,mechanical attributes and geometric specifications with EN standards.It delves into the status of rail production technology,shifts in key performance indicators and the quality characteristics of rails.The analysis further examines the interplay between wheels and rails,the implementation of grinding technology and the techniques for inspecting rail service conditions.It encapsulates the salient features of rail operation and maintenance within the high-speed railway ecosystem.The paper concludes with an insightful prognosis of high-speed railway technology development in China.Findings–The rail standards of high-speed railway in China are scientific and advanced,highly operational and in line with international standards.The quality and performance of rail in China have reached the world’s advanced level.The 60N profile guarantees the operation quality of wheel–rail interaction effectively.The rail grinding technology system scientifically guarantees the long-term good service performance of the rail.The rail service state detection technology is scientific and efficient.The rail technology will take“more intelligent”and“higher speed”as the development direction to meet the future needs of high-speed railway in China.Originality/value–The development direction of rail technology for high-speed railway in China is defined,which will promote the continuous innovation and breakthrough of rail technology.
基金Supported by grants from the Hunan Pro vince Inno vation Plat-form and Talent Plan Project(Grant No.2021RC3017).
文摘Due to the limitations of railway route selection,some high-speed railways are inevitably built near or across fault zones.To study the distribution of rail-bridge interaction under different load history states of suspension bridges under three types of near-fault pulse-type earthquakes,this paper takes China’s longest high-speed railway suspension bridge—Wufengshan Yangtze River Bridge-as the background and establishes a spatial model of the rail-bridge interaction of a suspension bridge.The results show that:under the constant load state,the distribution of additional force under three types of pulse-type earthquakes is generally consistent,and pulse-type earthquakes produce more significant responses than non-pulse-type earthquakes;with fling-step pulse being the largest,it is advised to specifically consider the influence of the fling-step pulse in the calculation.Under the initial condition of the main beam temperature loading history,all rail-bridge additional forces increase significantly,particularly affecting the steel rail system.The value of the rail-bridge interaction additional force under the near-fault earthquake in the initial state of the suspension bridge when the train deflection load is loaded from the tower to the mid-span is more significant and particularly unfavourable.The initial effect of the braking load will weaken the effect of the deflection load loading history.The results of the study indicate that the effect of the initial state of suspension bridges is an important factor influencing the rail-bridge interaction under near-fault pulse-type earthquakes,which needs to be considered in future seismic design.